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ABSTRACT. Let p = 1 (mod 4) be a prime, m € Z and p { m. In this paper we obtain
a general criterion for m to be a quartic residue (mod p) in terms of appropriate binary
quadratic forms. Let d > 1 be a squarefree integer such that (%) = 1, where (%) is the

Legendre symbol, and let e4 be the fundamental unit of the quadratic field Q(+/d). Since

1942 many mathematicians tried to characterize those primes p so that ¢4 is a quadratic

or quartic residue (mod p). In this paper we will completely solve these open problems
—1

by determining the value of (u + v\/g)(p_(T))/z (mod p), where p is an odd prime,

u,v,d € Z, v # 0, ged(u,v) = 1 and (%d) = 1. As an application we also obtain a

general criterion for p | u a,b), where {un(a,b)} is the Lucas sequence defined

p—(=2y)/4(
by wo =0, u1 =1 and up41 = bun, — aunp—1 (n > 1).

MSC: 11A15, 11E25, 11B39.
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1. Introduction.

Let Z be the set of integers, i = v/—1 and Z[i] = {a + bi | a,b € Z}. We recall that
a+ bi is primary when b = 0 (mod 2) and a+b =1 (mod 4). If 7 or —7 is primary and
o € Z[i], one can define the quartic Jacobi symbol (£), as in [S1].

For a,b,c € 7Z denote the binary quadratic form az? + bxy + cy® by (a,b,c), and
denote the (proper) equivalent class that contains the form (a,b,c) by [a,b,c]. The
discriminant of (a, b, ) is the integer d = b* — 4ac, only positive-definite forms are taken
if d < 0. If an integer n is represented by (a,b,c), then n is also represented by any
form in the class [a, b, c]. So we may say that n is represented by the class [a, b, ¢|. For
D =0,1 (mod 4) let H(D) be the form class group which consists of primitive, integral
binary quadratic forms of discriminant D, and let h(D) = |H(D)| be the corresponding
class number.

Let p =1 (mod 4) be a prime, and m € Z with p 1 m. The basic problem of quartic
residues is to characterize those primes p for which m is a quartic residue (mod p). In
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1828 Gauss proved the following Euler’s conjecture: 2 is a quartic residue (mod p) if
and only if p = 22 + 64y?(z,y € Z). Here one may ask a natural question: how to
generalize the result to an arbitrary integer m? When ¢ is an odd prime different from
p, the author proved in [S1] that (—1)(@~1/2¢ is a quartic residue (mod p) if and only if
p is represented by one of the fourth powers (under composition) of primitive quadratic
forms of discriminant —16¢%. In Section 5 of this paper we will completely solve the
above problem by proving the following result.

(1.1) Suppose that m/ is the product of all the distinct odd prime divisors of m € Z,
m = 2%mg(2 1 mg) and m* = 4m’/(4, mg—a—1), where (n1,ny) is the greatest common
divisor of n; and ng. If p =1 (mod 4) is a prime such that p { m, then m is a quartic
residue (mod p) if and only if p is represented by one class in the set

G(m) = {[a, 2b, | ‘ ged(a, 2b,¢) = 1, (2b)? — 4ac = —16m*?, a > 0,

(m+1)b—2m*(m — 1)2) _ 1}.
4

a=1(mod 4), (a,m) =1, ( .

Moreover, if m and —m are nonsquare integers, then G(m) is a subgroup of index 4 in
the form class group H(—16m*?).
Let d > 1 be a squarefree integer, and 4 = (m +n+/d)/2 be the fundamental unit of

the quadratic field Q(v/d). Suppose that p = 1 (mod 4) is a prime such that (%) =1,

where (%) is the Legendre symbol. One may ask a question: how to characterize those

odd primes p so that g4 is a quadratic or quartic residue (mod p)?
When the norm N(gq) = (m? — dn?)/4 = —1, many mathematicians tried to

characterize those primes p (p = 1 (mod 4), (%) = 1) for which ¢4 is a quadratic

residue (mod p). In 1942 Aigner and Reichardt[AR] proved that e = 14 /2 is a qua-
dratic residue of a prime p = 1 (mod 8) if and only if p = 22 + 32y*(x,y € Z). In 1969,
Barrucand and Cohn [BC] rediscovered this result. Later, Brandler[B] showed that for
q = 5,13,37 the unit ¢, is a quadratic residue of a prime p (p =1 (mod 4), (%) =1)if
and only if p = 2% + 4qy*(x,y € Z). For more special results along this line one may
consult [CI], [L], [LW1], [LW2], [FK], [H1], [H2], [HI] and [Lem, pp.168-170]. In Section
6 of this paper we will completely solve the problem by presenting the following general
result.

1.2) Suppose that p = 1 (mod 4) is a prime, d,m,n € Z, m*—dn? = —4 and (4) = 1.
p

Then (m +n+v/d)/2 is a quadratic residue (mod p) if and only if p is represented by one
class in the set

S(m,n,d) = {[a, 2b,c] | [a,2b, c] € H(—4k?d), a =1 (mod 4), (ML = 1},

where
1 if d =4 (mod 8),
if d=0 (mod 8) or d =1 (mod 2),

4 if d =2 (mod 4).
2
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Moreover, if d # 1,4, then S(m,n,d) is a subgroup of index 4 in H(—4k?d).

When the norm N(g4) = 1, how to characterize those primes p (p = 1 (mod 4), (%) =
1) in terms of binary quadratic forms so that ¢4 is a quartic residue (mod p)? In 1974,
using the cyclotomic numbers of order 12, E. Lehmer[L] proved that e3 = 2 + /3 is a
quartic residue of a prime p = 1 (mod 12) if and only if p = 2% +192y? for some integers
x and y. She also conjectured that e7 = 8 4+ 31/7 is a quartic residue of p if and only if
p = 22 +448y? for some integers x and y. In 1977, P.A. Leonard and K.S. Williams[LW1]
proved Lehmer’s conjecture and gave some additional special results. However, their
method made them only succeed for the 21 imaginary bicyclic biquadratic fields having
class number 1 and containing Q(v/—1), Q(v/—2) or Q(1/2) as a subfield. So they barely
obtained partial results in the cases d = 3,7,11,19,43,67,163, 6, 14,22, 38,86,134. In
Section 8 we will completely solve the problem by proving the following general result.

(1.3) Suppose that p = 1 (mod 4) is a prime, m,n,d € Z, m? —dn? = 4, p{n and
(%) = 1. Then (m +n\/d)/2 is a quartic residue (mod p) if and only if p is represented
by one class in the set

No(m,n,d) = {[a,Qb, d | b* —ac = —6(n,d)*d, a =1 (mod 4),

3(n, d) oe2gy
ZZ ( 2)l>4:1}’

where §(n,d) € {1,2,4,8} is explicitly given by Table 4. Moreover, No(m,n,d) is a
subgroup of H(—46(n,d)%d).

Let d > 1 be a squarefree integer such that N(g4) = 1, and let p = 3 (mod 4) be
a prime with (_Tfi) = 1. In the book “Reciprocity laws: From Euler to Eisenstein” F.

_bn
(a,b) =1, ( (n,m—2)

Lemmermeyer|[Lem, p.418] proposed some open problems. The fourth problem is to
determine sép +1)/4 (mod p) in terms of appropriate binary quadratic forms. In Section
8 we will also solve this open problem.

For a,b € Z the Lucas sequences {u,(a,b)} and {v,(a,b)} are defined below:

ug(a,b) =0, ui(a,b) =1, upt1(a,b) = bu,(a,b) — au,—1(a,b) (n > 1);
vo(a,b) =2, vi(a,b) =b, vy41(a,b) =bv,(a,b) —avy—1(a,b) (n > 1).

Let p be an odd prime such that (£) = (%) = 1. It is well known that (see [Le])
p | u(p_(_?l))/él(a,b) or p | v(p_(%l))/4(a,b). How to characterize those odd primes
p so that p | u(p_(%l))/4(a,b)? Suppose that p = 1 (mod 4) is a prime and that
{F.} (F,, = un(—1,1)) is the Fibonacci sequence. In [SS] the author and his brother
Zhi-Wei Sun showed that p | FpT—l if and only if p = 22 + 5y% # 5 with 2,y € Z and
4 | zy. Let P, = u,(—1,2) be the Pell sequence. In 1974 E. Lehmer showed that
p | Ppa if and only if p = 22 + 32y? for some z,y € Z (see [L],[S3]). Recently the
author[S2] showed that p | Up—1 (—1,3) if and only if p # 13 is represented by x% + 208y
or 1622 +13y%. In [S2] the author also proved the following result: Let p = 1 (mod 4) be
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aprime, 21 b, b>+4 # p, and let p be represented by 22+16(b%+4)y? or 1622+ (b*+4)y>.
Then p | UpT—l(_l,b).
In Section 7 we will solve the above problem by proving the following general result.
(1.4) Let p be an odd prime, a,b € Z, pta(b?® — 4a), and let a’ be the product of all
the distinct odd prime divisors of a. If a = 2%ag(2 1 ao),

&5 if 21¢,

4 if 2|t and 210,
(5&,() — 2 .
(a.0) PRESEy if 24a and 2 | b,

)
2

@ 1f2|t,2|aand2|b,

and k = d(a,b)a’/(a’,b), then p | u(p_(;l))/4(a, b) if and only if p is represented by one
class in the set

G(a.b) = {[4.2B,C] | [4.2B,C] € H(~4k*( — 4a). (4,20) = 1. (@)4 1},
Moreover, if a and a(4a —b?) are nonsquare integers, then G(a, b) is a subgroup of index
4 in H(—4k*(b? — 4a)).

Now we point out that (1.1)—(1.4) can be inferred from the following main result of
the paper (see Theorem 4.1).

(1.5) Suppose that p is an odd prime, u,v,d € Z, (u,v) = 1, v # 0, (_Td) =1,
p 1t u?— dv? and k = F(u,v,d), where F(u,v,d) is defined by Definition 2.1. Then

;1
(Mﬂ)(p_( P/ = (mod p) if and only if p is represented by one class in the set

vvVd—u

bv — kui
G(u,v,d) = {[a, 2b,c] | [a,2b, c] € H(—4k>d), (a,2(u® — dv?)) =1, (M) = 1}.
a 4
Moreover, G(u,v,d) is a subgroup of H(—4k?d); if u? — dv? and —d(u® — dv?) are
nonsquare integers, then |G (u, v, d)| = ;h(—4k*d).
Throughout this paper we use the following notation:
N—the set of natural numbers, Q—the set of rational numbers, Z[i] = {a + bi |

a,b € Z}, e4—the fundamental unit of the field Q(v/d), |2|—the absolute value of z,
[x] —the greatest integer not exceeding x, m | n—m divides n, m { n—m does not di-
vide n, p® || n—p® | n but p**! { n, ord,n—the nonnegative integer s such that p* || n,
(m,n)— the greatest common divisor of m and n, gcd(ny, no, n3)—the greatest com-
mon divisor of ny,ns,n3, [n1,...,ng]—the least common multiple of ny,ns, ..., ng,
(%)—the quadratic Jacobi symbol, (%) ,—the quartic Jacobi symbol, (a,b,c)—the
quadratic form ax?® + bxy + cy?, (a,b,¢) ~ (a’,b’,c')— the form (a,b,c) is (properly)
equivalent to the form (a’,b’, ), |a,b,c]— the equivalent class that contains the form
(a,b,c), H(D)—the form class group which consists of equivalence classes of prim-
itive, integral binary quadratic forms of discriminant D, h(D)—the order of H(D),
H,(D)—the subgroup of H(D) consisting of the fourth powers of the classes in H(D),
Ker y—the kernel of the group character y.
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2. Computing the quartic Jacobi symbol (%)4'

If 7 or —m is primary in Z[i], then we may write # = 4y - - - m,., where m1,... , 7,
are primary primes. For a € Z[i] the quartic Jacobi symbol () , is defined by

F= G ()

w4 \m/a m )4

where (%) , is the quartic residue character of a modulo 7, (see [IR, p. 122]).
For later convenience we also define

(a—i—bZ) :(a—i—bz> =1 forall a,beZ.
1 4 —1 /4

According to [IR, pp. 122-123, 311], [BEW, pp. 242-243, 247] and [S1] the quartic

Jacobi symbol has the following properties:
(2.1) If a + bi is primary in Z[i], then
7 La?4b2-1 i—a 1+ La—b—b2_1
< > =1 4 =142 and ( ) =i 4 .
a+bi/4 a+bi/a

(2.2) If o and 7 are relatively prime primary elements of Z[i], then

J—

(2.3) If a + bi and ¢ + di are relatively prime primary elements of Z[i], then we have
the following general law of biquadratic reciprocity:

a—+ b a—1 c—1 /Cc+ di
<c+di>4:(_1) C < ')4'
(24) If m,n € Z, 24 m and (m,n) = 1, then (2), = 1.
(2.5) If 7 or —m is primary and «, 8 € Z[i], then (%5)4 = (%)4(§)4.
(2.6) If 1 and 7 are primary and « € Z[i], then (= = ) = (= )4(%)4
Since —1 = i? and 2 = 3(1 + 7)?, using (2. ) and (2.5) one can easily derive that
(2.7) If @ + bi is primary in Z[i], then

-1
= (-1
(a + bi)4 (=1)
Using (2.3) and (2.7) one can also easily prove
(2.8) If a,b,p € Z with 2{ ap, 2 | b and (p,a® + b*) = 1, then

(), = 0T (),

From [S4, Proposition 1] or [S1, Lemma 2.1] we have
(2.9) Let p be a positive odd number, m,n € Z and (m? + n?,p) = 1. Then

(m—i— m’)2 B <m2 + n2>
p /4 p 7
For later convenience we now introduce the following notation.
5
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Definition 2.1. Suppose u,v,d € Z, dv(u? — dv?) # 0 and (u,v) = 1. Let u* — dv? =
(=1)"25W, W =1 (mod 4), and let w be the product of all the distinct prime divisors
of W (if W =1 we set w=1) . Then define

( [( Su) @, d)pordﬂ) if21s,
@ ris/z) gordzv if 2| s and 21 u,
f(U,U,d) - 2 )
.4 if2]s and 4| u,
2(2,d .
\m if2]sand?2 | u
and "
F(U,U,d) = (’LL w)f(U,U,d).

We are now in a position to give the following key result, which plays a central role
in the paper.

Theorem 2.1. Suppose u,v,d € Z, dv(u?—dv?) # 0 and (u,v) = 1. Ifa,b,c,K,z,y €
Z, k= KF(u,v,d), b>—ac = —k?d and (a(ax?®+2bzy+ cy?), 2Ky(u? — dv?)) = 1, then

((ax + by)v + kuyZ) B (bv - k:m)
ax? + 2bxy +cy? /4 a 4

Proof. Let r, s, w, f(u,v,d) and F(u, v, d) be given by Definition 2.1. Since F'(u,v,d) =
(J”—w)f(u, v,d), w|u?— dv? and (a(az? + 2bxy + cy?), 2Ky(u? — dv?)) = 1 we see that
(a(az? + 2bzy + cy?), F(u,v,d)) = 1 and hence

(a(az? + 2bxy + cy?), 2ky(u® — dv?)) = 1.

Now we claim that

Yk 2] kd, 2 Fu_ond 4| Fsv

(2.10) ) (o)’

(u, w)

Clearly %5 | k since —% (%) | F(u,v,d) and F(u,v,d) | k. From the definition of
f(u,v,d) we see that o)) d) | flu,v,d). Thus o)) d) | k and hence 2 | kd.

If 2 | w, then clearly 2 | kv) If 2 1 u, by Definition 2.1 we have ordsk >
ords f(u,v,d) > 1 + ordyv. Thus 2 | (k ) and agam 2| & Tony-

Now we show that 4 | ('Z‘f;‘) Since 2 | ( w7 by the above we see that the result is

true when 2 | s. Suppose 2 1 s. By Definition 2 1 we have 5 u) - gordzv ] f(u,v,d). Since
(8,u) | u and f(u,v,d) | k we see that 8 -2°742% | k. Thus (k—qu) = (ku 5 =0 (mod 8).

Hence again 4 | (ksu So (2.10) holds.
Let

2

ksu ku r+1+¥+0rd2k—0rdzv)-

$= 1o T 2o
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We assert that 2 | S. To prove this, we consider the following four cases.

CASE 1. 2 {s. In this case, by the above argument we know that 8 |

k”;) . Thus

2] 5.
CASE 2. 2| s and 2 { u. SlnceQJ(uandQI(—“WeseethatQ]kandhenee4\k2d.
Thus,
2
S = (Zu )(8+ +1+¥+ordgk—ord2v)
k

e )(7* + = ) "1y ordsk — ordav) (mod 2).

Clearly ordsk > ords f(u,v,d) > 1+ ordsv. If ordek > 2+ ordsw, then 4 \

) and thus

2| S. If ordek = 1 + ordyv, then ords f(u,v,d) = 1 4 ordev and hence 2 | (r+s/2).

Thus,

k
2(k,v)

S =

CASE 3. 2| s and 4 | u. In this case, 2 | 2(,” Thus,

ku s k2d

(r+§—|—1+ord2k—ordzfu)Er+§+1—|—150(mod2).

(5 +r+1+ 5 + ordak — 0rd2v) =0 (mod 2).

CASE 4. 2| s and 2 || u. Since (u,v) = 1 we see that 2 t v and hence 2 { (k,v). Thus,

ku s k2d
= 1+ — dgk — ord
2(]{:,1})(24—7“—# + 5 -+ ords or 211)

2

k*d
k(r+ % +1+ T + ordak) (mod 2).

Clearly 2 | S when 2 | k. Now assume 2 t k. Then we have f(u,v,d) = 1 and so

d+2r+s=2(mod4). Hence S=r+5+1+4 % =0 (mod 2).
Summarizing the four cases we get the assertion 2 | S.

If ky = 0, then

(a(az® + 2bzy + cy?),0) = (a(az? + 2bxy + cy?), 2ky(u® — dv?)) =

and so a(az? + 2bzy + cy?) = +1. Hence

(e zar) == (),

So the result holds in this case.



Now assume ky # 0. Since 2 1 a(az? + 2bxy + cy?), 2 | kd and a(az? + 2bxy + cy?) =
(ax+by)? + k2dy? we see that 2 { ax+by. Observing that 2 | (f—?f}) and (ﬁ, ﬁu) =1
we also find 2 1 Gy and hence 2 1 CME

Let
v kuy ku Y
and B = = . .

(v, ky) (v.ky)  (k,v) (v/(k,0),y)
)(A+B—1)/2(A_|_

1
((az? + 2bzy +

A = (az + by)

By the above, it is clear that A = 1 (mod 2) and B = 0 (mod 2). Thus (—
Bi) is primary in Z[i]. Notice that (az? + 2bxy + cy?, (v,ky)) =
cy?, ky),v) = 1. So we have

<(ax-|—by)v-l—kuyz') _( A+ Bi )
ax? + 2bxy +cy? /4 \ax? + 2bxy + cy? /4’

Since
(az? 4 2bxy + cy?) v = ((az + by)* + k*dy?) v
e Y o ky)? Y Y0, ky)?
02 k2022 k22
— b 2 d 2 2
(az +by) (v, ky)? " (v, ky)? (do” )(v, ky)?
= A + B* + (dv® — u?) Ky
(v, ky)?
and

(u,v) = (a(az?® + 2bxy + cy?), 2ky(u? — dv?)) =1

we see that

(a(az?® + 2bxy + cy®)v?/ (v, ky)?, A% + B?)
= (a(az® + 2bxy + cy®)0?/ (v, ky)?, (u® — d*)k?y? [ (v, ky)?) = 1.

Thus,

A+ Bi A+ Bi A+ Bi
( . Z>4<ax2+2_l|7_xyz+cy2)4<v2/(jf—aki;)2

As before we have 2 | kd, 2t ax + by and 2 1 - S0

)4%0'

a

2 2
alax? + 2bxy + cy?) CEN ((az + by)* + k*dy?) e Q;{:y)2

(v, ky)?
=1+ k%dy? = (—1)F W /2 = (—1)F /2 (0 4).
8




Hence , applying all the above and (2.1)-(2.3) we obtain

<(a:c+by)v+kuyi) :( A+ Bi >

ax? + 2bxy + cy? ax? + 2bxy + cy?

B A+ Bi A+Bi -1
N (a(aac2 + 2bxy + cy?)v?/ (v, k:y)2> <cw2/(v, ky)2>

(—1)F° /20 (az? + 2bay + cy®)v2/ (v, ky)2> < A — Bi >

( A+ Bi a\av?/(v, ky)? /4
_ k2dy 2 2 2\1.2,,2 2 . s ¥
- (A+1Bi>4 (A L +(dA+1]_f%)k v /) >4<Ii)?zziz>4
_ k2 dy 2122/ (v, ky)®\ /A — Biy /A Bi
B <A+1Bz'>4 <(dv uA)]—f}—yBi/(U & )4( aBZ>4< (U;’CiZ)i
- K24y (dp? — u2) 5,2@/22 ff)y fu : sy
- (A+1Bi>4 ( - A:L—B(z = )4<( = a( = )4((1)’122))421
K24y B 2 _ ) k242 /(v, ky)? L 2
=== ((dv uA)lj—ZJBz/(U & >4<bv akw)4<fu/(1fky))4
(note that (A+1Bz) = (—1)§ and (a, ky) = 1)
_ (_1)# ’§’<( 1)T+12i4 +l{rZBg/;/(v,ky)2)4<bv —akui>4
(note that (y — 1)B/2 is always even)

= (eS8 (R (57, (),

Suppose that p is a prime divisor of W. Then p | w. Since (J“”—w) | k we see that
w | ku and hence p | ku. If p | v, we must have p | u since u? = dv? + (—=1)"2°W. But

(u,v) =1, so ptwv. Hence p | (—“ and therefore p | B. So we have

(), -, -116E), -

_ _ k
Now let n = ordg 2~ (k m and t = ordyy. Since 2 ¢ (k m and (U ky) GOR (U/(k‘lfv)yy), we
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see that 21| (Uk,fy). Assume (Uk—;ijy) = 2" M (2+ M). Then we have

$1.2,,2 , 2 s+2n+2t 52 s+2n A )
)= G )= G, (),

A+ Bi A+ Bi A+ Bi/a M?
2 s+2n+2t , A + Bi\ 2
(s orarm), Car

M
(by (2.7) and the fact that M | B)

_ Z-f(A+B)§(s+2n+2t)

2
_ j—(=1)ATETD2 B (s omat) ( A >
4

(note that (—1)A*+B=1/2 = A 4 B (mod 4)).
Recall that 2 | %, 2 %5 and 2{ ax + by. We find

B (ax+by)v+kuy  kuy  kuy((ax + by)v + kuy)

A =T k) 2k 2060200/ (k0),9)?
_ kuy((az + by)v + kuy) _ kuvy(az + by) o kuy )2
a 2(k,v)? N 2(k,v)? 2(k,v)
kuy

<(aa: + by)L + 2) (mod 4)

2(k,v) (k,v)

and therefore

<25k21312/(’07 ky)2> _ i—(s+2n+2t)(A+B)B/2 _ i—(5+2n+2t)%((am+by)ﬁ+2)
+ Bt 4

—s 25,33)) ((az+by) Gy +2)+2(n+t) 72’;,;3}) _ @'72?1% (2n+2s—s(az+by) y)

=1
(note that 2s = —2s (mod 4) and 4 | 2ty).

As before we have 2 { Gy Thus
B ku Y kuy

2~ 2(kv) (v/(kv),y)  2(kv)

(mod 2)

and so

2 24y _k 205 &
(—1)(T+1+%)§ = (—1)(r+1+%)2<5ﬁ)> _ 205 sy

Now putting all the above together we get

<(a:p + by)v + kuyz’>
ax? + 2bxy + cy? /4
_ (—1)riiin g (25k2y2/(v, ky)2> (A + Bi) (bv - kuz>
A + Bi 4 W 4 a 4
_ i2(r+1+#)% . i%@n—k&s—s(am—kby) (kl,}v)) 1. (bU — k:uz>
a 4

u 2 v — )
P {2 st 5 ) s (awby) ey} (bv ’W) .
4

a
10



From the above we have 2 { ax + by, 4 | (k’]j—v“) and 2 ¢ ﬁ So
- sty _ () stvlarti iy _ (L )dy

Note that n = ordok — orda(k,v) = ordsk — ordgw since 2 4 (lf—v) By the above we get

<(ax + by)v + kuyi)4

= (—n){En Ty <r+1+’“§d+ordzk—ordzv>}y<bv - km)
azr? + 2bxy + cy? 4

a

_ (_1)Sy<bv —ak:ui>4 _ (bv —ak’ui)l

We are done.

Remark 2.1 By the proof of Theorem 2.1, we have the following general result.
Suppose u,v,d € Z, dv(u? — dv?) # 0, (u,v) = 1, and u? — dv? = (—=1)"2°W with

W =1 (mod 4). Let w be the product of all the distinct prime divisors of W, and

a,b,c,k,x,y € Z. If

k
(a(az®+2bry+cy?), 2ky(u® —dv?)) = 1, b —ac = —k*d, (ufuw) ’ k, 2 | kdand 2 ‘ (k:j:;),
then
((aa: + by)v + k:uyi> . Z% (bv — k:uz)
ax? + 2bxy + cy? /4 a %
where

k%d
m=2(r+s+1+ 3 + ordok — ordov) — s(az + by)(kf,}—v).
Corollary 2.1. Suppose u,v,d € Z, dv(u®>—dv?) # 0 and (u,v) = 1. Ifa,b,c,a’, v, ¢/, K
€7Z, k=KF(u,v,d), (a,2b,c) ~ (a’,2b,c"), b*—ac= —k?d and (ad’,2K (u?—dv?)) =

1, then
(b’v—kui) B <bv—kui>
a’ 4 a 4

Proof. Since (a,2b,¢) ~ (a’,2b, "), there are integers «, 3,7, 0 such that ad —y =1
and

a(ax + By)? + 2b(ax + By)(yx + 0y) + c(yx + 6y)? = a'z? + 20 zy + 'y
That is,
(2.11) @ = aa® + 2bay + cy?, b = aaB + blad + By) + 6, ¢ = af? + 2bB5 + 5.
Hence
Vy = aafy + by(ad + By) + cy?d
= aafBy + bBy? + bady + §(—aa® — 2bary)
= aa(fy — ad) + by(By + ad — 2ad)

= (aa + bY)(By — ad) = —(aa + by) (mod |ac? + 2bay + cy?|)
11



and so

2 2
(2.12) V1 —__ % (mod lac® + 2bary + ey
(CL, 7) (a7 ’7) (a, ’7) (a’ fy)

).

Let a* = a/(a,v), ¢* = (a,7)c, x = a and y = v/(a,7). By (2.11) and (2.12) we

have
/

ao? + 2bary + cy? _a

a*x? + 2bzy + c*y? =
(a,7) (a,7)

and
Vy=—a*z — by (mod |a*z? + 2bxy + c*y?)).

Since (ad’, 2K (u? — dv?)) = 1 we see that (a*(a*z? + 2bzy + c*y?), 2K (u? — dv?)) = 1.
Observe that («,y) = 1 since ad — fy = 1. We find (a*z,y) = (aa/(a,7),v/(a,v)) = 1.
Hence

(a*(a*2? + 2bzy + c*y?), 2Ky (u? — dv?)) = 1.

Clearly we have (2b)% — 4a*c* = (2b)? — d4ac = —4k?d. Thus, applying the above and
Theorem 2.1 we get

bv — kui
(7 s

( —b'vy + kuyi )
a*x? + 2bxy + c*y?/ 4

(bv ;km>4 N <ZU/(_a,k$)i)4‘
Notice that b’ = bad = b(1 + ) = b (mod (a,)). Then we see that

I s T b o o o
<b : a’kw)z; - (bz(Ja,VI;UZ)zL(l;}}/(a,kj)z)zl - (bv(a,j)m>4<€1v/(a,k:)z>4 - <bv akm)z;'

This is the result.

b'v — kui
(a*xQ + 2bxy + c*y? )4
(a*z + by)v + kuyi
(a*x2 + 2bxy + c*y? )4

3. The quartic characters on H(—4k?d).
In this section we use quartic Jacobi symbols to construct the quartic characters on
the form class group H(—4k?d).

Lemma 3.1. Suppose a,b,c € Z, a # 0, gcd(a,b,c) =1 and M € N. Then there is
a primitive quadratic form (a’,b',c)(d’, b, ¢ € Z) such that aa’ > 0, (a’,M) =1 and
(a0, c) ~ (a,b,c).

Proof. Gauss showed that there exist integers z,y such that (z,y) = 1 and (ax? +
bry+cy?, M) = 1, see for example [Cox, Lemma 2.25]. Replacing x by z+kM |y|, where
k is large enough, we get a(az? + bxy + cy?) > 0. So there is an integer a’ such that
aa’ >0, (', M) =1 and d’ is properly represented by (a, b, ¢). By a result of Gauss (see
[Cox, Lemma 2.3]), a form properly represents o’ if and only if it is properly equivalent
to a form of the shape (a’, %, ). So the result follows.

12



Lemma 3.2. Let (a1,b1,c1) and (ag,ba, c2) be two primitive, integral quadratic forms

of the same discriminant d, t = ged(aq, az, bl‘gbg ), and let u,v,w be integers such that

a1 + asv + bﬁb?w = t. If we set az = ajas/t?, by = by + 2a2(%v — cow)/t and
= (b3 — d)/(4a3) then

bs = by (mod 2%), bs = by (mod 2%) and [ay,b1,c1][as, ba, o] = [as, b, c3).

Proof. From [C, p.246] we know that [a1, b1, c1][az, be, co] = [as, b3, c3]. Also, clearly
bs = by (mod 222). So it suffices to show that bs = by (mod 22+). Since c; = (b3 —
d)/(4az) = (b3 — b2 + 4aic1)/(4as), we see that

. 2&2 b1 — bQ b% — b% -+ 4@161
bg = b2 + n ( 9 (% 4CL2 w)
2
_b2+ (bl —ba)v+ (b1 — b )Mw—Q%clw

=by + (b _52)(7U+ w

= b2 +b1 — b2 = bl (IIlOd 2a1/t).

a1

w) = b2 + (bl — b2)(1 — 7u)

This proves the lemma.

Lemma 3.3. Let (a1,2b1,c1) and (az,2bs, c2) be two primitive quadratic forms of dis-
criminant 4d(d € Z), and 2t ayaq. If (as,2bs, c3) is the composition of (ay,2b1,c¢1) and
(az, 2ba, c2) as defined in Lemma 3.2, and u,v € Z with (a1, b3u?+v?) = (az, b3u+v?) =

1, then we have
<b1u+vi) <b2u+vi> B <b3u+vi>
a; 4 as 4 as 4

Proof. Since (a1, b3u®+v?) = (az, b3u®+v?) = 1 we see that (bl";i””')zl(bzqgm)4 # 0.
Let t = ged(ay, az, by + be). From Lemma 3.2 we know that

0y = % . % and  2b; = 2b, (mod 2%) (s =1,2).

Thus,

b3u+wviy  bsu+vi bsu+wviy  biu+vi bou + vi

( as >4_< ay /t )4( as /[t )4_( ay/t )4( as /[t )4
_ (bhu+twvi biu +vi\ —1 sbyu + vi bou + vi\ —1
_< ay )4( t )4 ( as )4( t )4

_ (blua—ll— vi>4<b2ua—2|— m’>4<b1ut— m’>4<b2ut— m’>4'

But, since b; + by = 0 (mod t) we have

(blu—vz’) (bgu—m> :<b1u—m bgu—m)) :(b1b2u2—v2—(b1—|—bg)uvi)
4 4 4

t t
( bgu — 2 > _ 1
13



Hence

b ) b ' b '
() - L),

This proves the lemma.

Lemma 3.4. Suppose D € Z — {0}. Let G be a subgroup of H(—16D), and let G =
{[a, 2b, c| } [a,2b,c] € G, a=1 (mod 4)} Then

(i) Gy is a subgroup of index 1 or 2 in G.

(ii) If p = 1 (mod 4), then p is represented by one class in G if and only if p is
represented by one class in G1.

Proof. For [a,2b,c] € H(—16D), it is known that (see [D] and [Cox, p.55]) x([a, 2b, c])
= (=1)“z (2t a) is a genus character on H(—16D). So ¥ is also a character on G and
hence G is a subgroup of index 1 or 2 in G. This proves (i). Applying [Cox, Lemma
2.3] we get (ii) and hence the proof is complete.

Applying Chebotarev’s density theorem to the field Q(y/u, 1/v) one can easily derive
the following result.

Lemma 3.5. If u and v are nonsquare integers, then there are infinitely many primes

q for which (3) = (%) = —1.

We point out that Lemma 3.5 can also be proved by using Chinese remainder theorem
and quadratic reciprocity law.
Now we are able to give

Theorem 3.1. Suppose u,v,d € Z, dv(u® —dv?) #0, (u,v) =1, and k = KF(u,v,d)
with K € Z. For [a,2b,c] € H(— 4k2d) with (a 2K (u? — dv?)) = 1 define x([a, 2b, c])
(b“;km) If 8 | k2d, we also define x'([a, 2b, c]) (k””Lb“) Then x and x' (if 8 | k*d)
are quartic characters on H(—4k?d). Hence the kernels

G(u,v,d, K)
= Ker x = {[0,20,¢] | [0, 2b,c] € H(~4kd), (a,2K(u® —d?)) = 1, (M>4 -1},
G'(u,v,d, K)

ku + bvt
_ r_ 42 2 _ 32\ _ _
— Ker y —{[a,Zb,c] | [a,2b,d] € H(~4k%d), (a,2K (u® — dv?)) = 1, ( : )4 1}
are subgroups of H(—4k?d), and Hy(—4k?d) is a subgroup of G(u,v,d, K) and G'(u,v,d, K)
(if 8 | k2d) . Moreover, if u®> — dv? and —d(u® — dv?) are nonsquare integers, then
|G (u,v,d, K)| = |G (u,v,d, K)| = $h(—4k>d).

Proof. From Corollary 2.1 and Lemma 3.1 we see that y is well-defined, and clearly
x([1,0, k%d]) = 1. Thus, applying Lemma 3.3 we find that  is a group homomorphism
from H(—4k?d) to {41, +i}. Hence Yy is a character on H(—4k?d). If 8 | k?d, define
Y([a,2b,c]) = (|a|) Then clearly

X ([a,2b,c]) = (2)4(@)4 - (|2|> (la, 2b,c])
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and so Y’ = x®. Using Corollary 2.1 and Lemma 3.2 one can show that v is a character
of H(—4k?d). Actually it is well known that 9 is a genus character of H(—4k2d) (see
[Cox, p.55] and [Bu]). So x’ is also a character on H(—4k?d). Therefore H,(—4k?d) C
Ker x and Hy(—4k?*d) C Ker x' (if 8 | k%d).

From group theory we know that Ker xy and Ker x’ (if 8 | k2d) are subgroups on
H(—4k?d). Now suppose that u? — dv? and —d(u? — dv?) are nonsquare integers. It
follows from Lemma 3.5 that there are infinitely many primes ¢ such that (%) =
(—_d(u2q_dv2)) = —1. Hence, there is an odd prime ¢ satisfying ¢ { k and (—“2_qd”2) —
—(%l) = —1. For such a prime ¢, clearly 22> = —d (mod ¢) for some x € Z since

(_Td) = 1. On setting b = kx and ¢ = k?(22 + d)/q, we find that
(q,b) = (q,2k(u* —dv?®)) =1, c€Z and (2b)* —4cq = —4k*d.

On the other hand, applying (2.9) we see that

bv—kui)2 _ <62v2+k2u2> _ <—k2dv2+k‘2u2) _ <u2 —va) _ 1

K*(fa,20,d)) = (), ; - -

Hence x([q, 2b, ¢]) = +i. Since  is a group character, we must have

x([g,2b,c]*) = =1, x([g,2b,d]*) = Fi and x([g,2b,d*) = 1.

Thus x and so x’ (if 8 | k%d) are surjective homomorphisms. Therefore, |Kery| =
|Kery'| = $h(—4k?d). This completes the proof.

Corollary 3.1. Suppose that d > 1 is a nonsquare integer, and u? — dv? = 1 with
u,v € Z and 2 fv. For [a,2b,c] € H(—16d) with 2 { a define x(|a,2b,c]) = (%)4.
Then x is a quartic character on H(—16d).

Proof. Since u? —dv? =1 and 2 { v, from Definition 2.1 we see that r = s =0, w =1

and F(u,v,d) = f(u,v,d) =1 or 2. Now putting k = 2 in Theorem 3.1 yields the result.

e (mod p).
For positive odd number p let D,, be the set of those rational numbers whose denom-
inator is prime to p. Following [S1] we define

(p—(=2))/4
4. Criteria for (M> g

k+1
p

(4.1) 0. (p) = {k‘ ( )422"'“, ker} for r=0,1,2,3.
Theorem 4.1. Let p be an odd prime, u,v,d € Z, (u,v) =1, v # 0, ptd(u® — dv?),
KeZ,ptK, k=KF(u,v,d) and n = (p — (_71))/4

(1) Assume that p = az® + 2bzy + cy*(a,b,c,x,y € Z), (a,2Kp(u® — dv?)) = 1,
b2 —ac = —k?d and j € {0,1,2,3}. Then

(ams) = (G5 o = (M) =
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and if 8 | k*d, then also
(Y = (SH) ™ va) moa ) o= (BE) —i

(2) Let (_Tfl) =1, and let G(u,v,d,K) and G'(u,v,d, K) be given in Theorem 3.1.
Then (%)n = 1 (mod p) if and only if p is represented by one class in G(u,v,d, K).

v

If 8 | k%d, then (%)n = 1 (mod p) if and only if p is represented by one class in
G'(u,v,d, K).
Proof. We show first that p{y and (az,y) = 1. Indeed, if p | y, then p |  since p 1 a

and p = az? + 2bzy + cy?, so p? | ax? + 2bxy + cy?, a contradiction. Hence p { y, and
(ax,y) | p implies (az,y) = 1. Since ap = (ax + by)? + k*dy? and pt k, we obtain

(axzi;byf = —d (mod p) and <<_?1> axkgyby Vi) = =1 (mod )

;1
If p | u, then clearly p f dv and (%)(ZD_( P/ — (mod p). Since (a,2b,c)

properly represents p, by [Cox, Lemma 2.3] we have (a,2b,c) ~ (p,2V,¢') for some
b,c € 7Z. Applying Corollary 2.1 we get

(- (P () o

Now assume p t u. By Theorem 2.1,

SR (lenhisbuty (o

Hence, if (2=kut) = I then - 24by ¢ Q,(p) and so

4 ky

" v aztb aztby  [I\ n B '
() = (atra) = () ™) wodn

ky kdy
by [S1, Theorem 2.3].
Assume now that 8 | k2d. Then ap = (ax + by)? = 1 (mod 8), hence a = p (mod 8)

and .
== ()= (B) = = (),

If (M)4 = ¢/, then

(bv—kui) _ (ku+bm’> (i)_lzij.i—?n:ij—?n
a 4 a a\a/4
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and therefore

(u+vx/§l>n:(_1)n(v\/3+u>n i2”<< 1)am+by\/—)ﬂ 2n

u—vvVd vVd —u p kdy
ax + by
= d p).
() 5 va) tmoan
If (_Tfl) = 1, then p can be represented by some primitive form of discriminant

—4k?d, and therefore there exist a, b, ¢ € Z such that ged(a,2b,¢) = 1, b* — ac = —k*d,
(a,2Kp(u? — dv?)) = 1 and p = ax? + 2bxy + cy? for some z,y € Z. By the definition of
G(u,v,d, K), we have [a,2b,c] € G(u,v,d, K) if and only if (%)4 = 1. By (1), this

is equivalent to (%)n = 1 (mod p). So (%)n = 1 (mod p) if and only if p is

represented by one class in G(u,v,d, K). The additional statement in the case 8 | k?d
can be proved in the same way.

Corollary 4.1. Suppose that p = 1 (mod 4) is a prime, u,v € Z, v # 0, (u,v) =1,
ptu?—% and k = KF(u,v,1) with K € Z and pt K. Then (U—i-u)/(v—u) is a
quartic reszdue (mod p) if and only if p can be represented by one class in G(u,v, 1, K).
Moreover, if 4 | k, then (u+ v)/(u —v) is a quartic residue (mod p) if and only if p is
represented by one class in G'(u,v,1, K).

Proof. Taking d = 1 in Theorem 4.1 and then applying Euler’s criterion leads to the
result.
Remark 4.1 For the class [a,2b,c] in G(u,v,1,K) or G'(u,v,1, K) we may further
assume that a > 0 and a = 1 (mod 4) with no loss of generality.

Theorem 4.2. Let p be an odd prime, d € Z, d # 0,1 (mod p), (_Tfl) =1, s(—d,p)? =
—d (mod p), 1 —d = (—=1)"2°W(W =1 (mod 4)), and let dy be the product of all the
distinct odd prime divisors of 1 —d. Then the following statements are equivalent:

(1) s(=d,p) € Qo(p)-

(2) There is an integer n such that n®> =1 —d (mod p) and (3) = (”Tfl)
(3) The congruence x* +2(d — 1)x? + d(d — 1) = 0 (mod p) is solvable.
4) — (2x — 1)/(3: —1)% (mod p) for some x € 7Z.

(6) p is represented by a primitive form az® + 2bxy + cy? of discriminant —4k%d
with the condition that (a,2(1 —d)) =1 and (%)4 = 1, where k = 8dy or
according as 21 s or 2 | s.

4dg
(2,74+s/2)

Proof. From [S1, Theorem 2.4] we know that (1) and (2) are equivalent, and from
[S1, Theorem 2.3] we see that (1) is equivalent to (5) (see the proof of Theorem 4.1).
Putting u = v = K = 1 in Theorem 4.1(ii) we find (5) and (6) are equivalent. Since
24 42(d—1)2?+d(d—1) = (22— (1—d))?—(1—d), we see that z*+2(d—1)2%+d(d—1) =
0 (mod p) is solvable if and only if there exists an integer n such that n? = 1—d (mod p)
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and z? — n? = n (mod p) is solvable. This is equivalent to (2). So (3) is equivalent to

(2). Observe that

(s(—d,p)x)* +2(d — 1)(s(~d,p)x)* + d(d — 1)
= d*z" + 2d(1 — d)2® + d(d — 1) = —d( — d(z® — 1)* — 22° + 1) (mod p).

We see that (3) is equivalent to (4). Hence the proof is complete.

Remark 4.2 Let p be an odd prime, u,v,d € Z, (u,v) = 1, p f uv(u? — dv?), (%l) =1
and s(—d,p)? = —d (mod p). Using Theorem 4.1 and the argument in the proof of
Theorem 4.2 one can easily prove that the following statements are equivalent:

(1) us(=d.p) € Qo(p).

(2) (v\f—ku)(l’ ( ))/ =1 (mod p)

(3) p is represented by some class in G(u,v,d, 1).

(4) = ’ 2(u? d};; Y22 — dv?(u? — dv?) =0 (mod p) is solvable.
(5) « d“ = -7z (mod p) for some integer z.

5. Criteria for m to be a quartic residue (mod p).
In this section we present two criteria for m to be a quartic residue of p, where p is
a prime of the form 4k + 1 and m is an integer not divisible by p.

Theorem 5.1. Suppose that m € Z, m = 2%my(2 1 mg), and m* = 4m//(4,mp—1—a),
where m' is the product of all the distinct odd prime divisors of m. If p =1 (mod 4)
is a prime such that ptm, then m is a quartic residue (mod p) if and only if p can be
represented by one class in the set

G(m) :{[a, 2b, ¢ | [a,2b,c € H(~16m"?), a =1 (mod 4),
(a,m) =1, <(m + 1)b—2m*(m — 1)i>4 _ 1}‘

a

Moreover, G(m) is a subgroup of H(—16m*?); if m and —m are nonsquare integers,

then |G(m)| = ih(—16m*2).
Proof. It’s easy to check that G(1) = {[1,0,4]} and G(—1) = {[1,0,16]}. Since

p=1(mod 4) < p=2a>+4y° (z,y € Z)

and
pEl (HlOd 8) <~ p=x2+16y2 (%yGZ),

we see that the result holds for m = +1.

Now assume m # +1. Let us consider the following three cases.

CASE 1. m =0 (mod 2). Let u =m —1 and v = m+ 1. From Definition 2.1 one can
easily verify that f(u,v,1) =8/(4,mo—1—a) and F(u,v,1) = 2m*. Now taking K =1
in Corollary 4.1 and then applying Theorem 3.1 and Remark 4.1 yields the result.
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CASE 2. m =1 (mod 4). In this case, mg = m, o = 0, thus m* = 4m’/(4,my —
1—a)=4m'/(4,m — 1) = m/. On setting v = (m —1)/2 and v = (m + 1)/2, from
Definition 2.1 we see that

m/

((m = 1)/2,m’)

Thus applying Corollary 4.1, Theorem 3.1 and Remark 4.1 we get the result.

CASE 3. m = 3 (mod 4). In this case, mg = m, a = 0, thus m* =4m//(4,mg — 1 —
a) =4m’/(4,m — 1) =2m’. Set u = (m+1)/2 and v = (m — 1)/2. By Definition 2.1
we have f(u,v,1) =2 and F(u,v,1) = 2m’ = m*. Hence taking K = 2 in Corollary 4.1
and applying Theorem 3.1 and Remark 4.1 we see that m is a quartic residue (mod p)
if and only if p can be represented by some class in the set

flu,v,1)=2 and F(u,v,1) =

flu,v,1) =2m’ = 2m*.

G'(m) = {[a,2b, ¢ | gcd(a,2b,¢) = 1, (2b)% — dac = —64m'>, a > 0,
g

9 *.m—l—l_i_m—lb-
a =1 (mod 4), (a,m) =1, ( m 2 2 Z)4:1}.
a

To see the result G'(m) = G(m), we note that

2

<(m + 1)b—2m*(m — 1)i)4(2m* cmAl mleZ)

a a 4
B <((m + 1)b —2m*(m — 1)i)(m*(m + 1) — mT_lbz')>
N a 4
B (((m +1)2 = (m— 1)2)m b — =L 4 4m*2)i>
- a 4

2
dmm*b — = =Laci 4dmm™b

_ 2 _ _
(), =)=

and therefore

((m-l— 1)b — 2m*(m — 1)2) B (2m* cmAl mT_lbz')—l B <2m* cmAl mT_lbz>
a 4 a 4 a 4

Summarizing the above we get the assertion.

Corollary 5.1. Suppose that m € Z, m = 2%mgy(2 { mg), and m* = 4m//(4,mg —
1 — «), where m' is the product of all the distinct odd prime divisors of m. If p =
1 (mod 4) is a prime such that p{ m, and if p is represented by one of the fourth powers

(undercomposition) of primitive quadratic forms of discriminant —16m**, then m is a
quartic residue (mod p).

Proof. Let [a,2b,c] € H(—16m*?) with (a,2m) = 1. Then clearly (a,2b) = 1 since
b2 — ac = —4m*?. Observing that
((m4+1)b)% + (2m*(m — 1)) = (m + 1)?(ac — 4m*?) + 4m**(m — 1)?
Am*

(m—=1)2 = (m+1)?) = —=16mm*> (mod |a|)
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we find (a, ((m + 1)b)? + (2m*(m — 1))?) = 1 and hence ((m+1)b_2m*(m_l)i)4 #0.

Now suppose [a, 2b, c]* = [as, 2bs, cs] (s = 1,2,3,4). Then we may take as = a? and

hence a4 = a3 = a* by Lemma 3.2. Thus (a4,2m) = 1 and

((m—l— 1)by — 2m*(m — 1)2’)4 B ((m+ 1)by — 2m*(m — 1)i>4 _q

ay B a 4
Hence [ay, 2by, 4] = [a,2b,c]* € G(m), where G(m) is given in Theorem 5.1.

By Lemma 3.1 and the assumption, there exists a primitive quadratic form (a, 2b, ¢)
of discriminant —16m*? such that (a,2m) = 1 and that p is represented by the class
[a,2b,c]*. Applying the above we see that [a,2b,c]* € G(m). So m is a quartic
residue (mod p) by Theorem 5.1

Corollary 5.2. Let m € {£2,43,...,+10}. If p =1 (mod 4) is a prime such that
ptm, then m is a quartic residue (mod p) if and only if p is represented by one of the
corresponding quadratic forms in Table 1.

Table 1.
m Corresponding quadratic forms
+ 2 x? + 649°
3 2% + 144y?, 1322 + 10xy + 13y
-3 x? + 369°
4 x? + 16y°
-4 x2 4 4y?
5 x2 4 100y?
-5 x? 4 400y?, 1622 + 162y + 29y?
6 x? 4 576y2, 2522 + 1dxy + 252, Sx? & 4xy + 11632
— 6 x? + 576y%, 2522 + ldzy + 2592, 2022 + 4xy + 2992
7 x? + 784y, 1622 + 49y, 2922 £ 24xy + 32y°
-7 x? + 19632, 4x2 + 4912
+38 x? + 64y°
9 x? + 36y°, 4x* + 9y
-9 x? + 14492, 922 + 1632, 522 + 22y + 29y°
10 2% +1600y?, 4122 + 18xy + 41y?, 372% & 362y + 52>
—10 x? + 1600y, 412° + 18zy + 41y?, 1322 & 102y + 12512

Corollary 5.2 can be easily proved by Theorem 5.1, the theory of reduced forms and
some computations.

Now we give another criterion for m to be a quartic residue (mod p), which extends
Theorem 2.2 of [S1].

For positive odd number n let Q,(n)(r = 0,1, 2, 3) be defined by (4.1). Then we have

Theorem 5.2. Let p =1 (mod 4) be a prime, and p = a®> + b*(a,b € Z) with 2 | b and

4la+b—1. IfmeZ, ptm, m=(—1)"2°my, m; =1 (mod 4), and k € {0,1,2,3},

then m®P~1/* = (b/a)* (mod p) if and only if a/b € Q;(M), where M is the product of
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all odd primes dividing m but not b, and j € {0,1,2,3} is determined by the congruence
j=k—(2r—s)b/2 (mod 4).

Proof. Set m = a + bi. Then clearly p = 77 and b/a = i (mod =) since (a,b) = 1.
Note that 7 is primary. Applying (2.3), (2.5) and (2.7) we see that

p—

m"T = (b/a)* (mod p)
= m'T = (b/a)* =i* (mod 1) <= (ML = (T)4 =%

— (_—1>T<z>s<m> =i — (—1)%1)i_37b<l> =ik
m/Ja\w/a\ 7w /4 my/ 4

— (l) _ jk—@r—s)b/2 _ 5
mi/4

Let ¢ be any odd prime divisor of m;. If ¢ | b, then (%bi)4 = (%)4 = 1 since (a,b) = 1.
Thus,

G =T T (50, = (57, = (50,

qlma q|ma1,qtb

Hence

m' T = <§>k (mod p) <= (a/;j_iL:ij = %EQJ-(M).

This proves the theorem.

6. Criteria for ¢, to be a quadratic residue (mod p).

Suppose that d > 1 is a squarefree integer, and €4 = (m + nv/d)/2 denotes the
fundamental unit in the quadratic field Q(v/d). Then clearly m? — dn? = 4 or —4
according as N(gq) = 1 or —1, where N (g4) is the norm of €.

Lemma 6.1. Suppose d,m,n € Z and m? — dn®> = —4. Then (m,n) = 1 or 2, and
n/(m,n) is odd.

Proof. Since (m,n) | m and (m,n) | n we find (m,n)? | m?—dn?. That is, (m,n)? | 4.
Hence (m,n) = 1 or 2. If (m,n) = 1, then n/(m,n) = n and clearly n is odd since
m? — dn? = —4. If (m,n) = 2, then n/(m,n) = n/2. When £ is even, we have 2 { 2
and so (%#)?*+1 =2 (mod 4). On the other hand, (%)*+1=d(%)* =0 (mod 4). This

is a contradiction. So n/2 must be odd and hence the lemma is proved.

If m,n,d € Z and m? — dn? = —4, one can easily show that
m=1+(-1)% (mod 4) if4|d,
(6.1) m ) m=1(mod 2) if 24 dm,
' (m,n) ] ™ =0 (mod 2) if 24 d and 2 | m,
% =1 (mod 2) if d =2 (mod 4).

From (6.1), Definition 2.1 and Lemma 6.1 one can deduce
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Lemma 6.2. Suppose d,m,n € Z, m? —dn® = —4, w=m/(m,n) and v =n/(m,n).
Then
1 if d =4 (mod 8),
F(u,v,d) = f(u,v,d) = ¢ 2 if 8| dor21d,
4 if d=2 (mod 4).

Now we are in a position to give

Theorem 6.1. Suppose that p is an odd prime, d,m,n € Z, m? —dn? = —4, (%i) =1,

and p = ax® + 2bzy + cy?(a,b,c,x,y € Z) with pta,2{a and b*> — ac = —k?d, where k
1S given by

1 if d =4 (mod 8),
(6.2) k=4q 2 if 8 d or21d,
4 if d =2 (mod 4).

a

If (M)4 =1/, then we have

p*(%l)

m n\/_ 2
("5)

(G5

Proof. Let w = m/(m,n) and v = n/(m,n). Then v # 0, (u,v) =1 and ptu? — dv?.
Since

p—(Zh)

oW+ u\ —= VA4 my = rmA4 vy —a
(e =Catm) = ()

and k = F(u,v,d) by Lemma 6.2, putting K = 1 in Theorem 4.1 we obtain the result.
As examples, taking m = 1,3 in Theorem 6.1 one can easily obtain the following
results:
(6.3) If p is a prime such that p = 3,7 (mod 20) and p # 3, then p = 322 — 2zy + Ty?
(i.e. 3p = (3z — y)? + 20y?) for some x,y € Z and

p—(

V5 (mod p).

<1+\/g>pJ2r1 :_3x—y
2 o 10y

(6.4) If p is a prime with p = 7,11,15,19,31,47 (mod 52) and p # 7, then p =
72?2 + dxy + 8y? (i.e. Tp = (Tx + 2y)? + 52y?) for some x,y € Z and

V13 (mod p).

<3+ \/13>”§1 _ Tr+2y
2 N 26y

From Theorem 6.1 we have
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Theorem 6.2. Suppose that p is an odd prime, d,m,n € Z, m? — dn® = —4 and
(_]Td) = 1. Then (M)(p—(%))/Q =1 (mod p) if and only if p can be represented by
one class in the set

S(m.n.d) = {[0.2b.c] | [a,2b.] € H(~4k?d), a =1 (mod 4) (@)4 -1},

where k is given by (6.2). Moreover, if d # 1,4, then S(m,n,d) is a subgroup of index
4 in H(—4k%d).

Proof. Let u = m/(m,n) and v = n/(m,n). Then clearly (u,v) =1, v # 0, u? —
dv? = —(2/(m,n))? # 0 (mod p) and

vWd+u  nvd+m  (m+nVd)? (m+n\/3>2
od—u nvd—m  dn2—-m2 2 '

From Lemma 6.2 we know that k = F(u,v,d). Thus, from Theorem 4.1 we see that
<m+;l\/3)(p—(%1)/2 —_ ('U\/E-i-u

= v\/aiu)(p_(%))/‘l = 1 (mod p) if and only if p is represented by

one class in the set

Glu,v,d,1) = {[a, 2b,¢] | [a,2b,c] € H(—4k2d), 21 a, (M)4 - 1}.

a

For [a,2b,c] € G(u,v,d,1) we may suppose a > 0 by Lemma 3.1 and the theory of
reduced forms. Notice that

(bv—kuz’)2 _ (bn—kmz’>2 _ (b2n2+k2m2> ((ac—erd)n2+k:2m2

) by (29))

a 4 a 4 a a
- (Sl ) (U ()

We find that (M)4 = 1 implies @ = 1 (mod 4). Hence S(m,n,d) = G(u,v,d,1).

Thus we see that (M)(p ~(5/2 = (mod p) if and only if p is represented by one
class in S(m,n,d).

From Theorem 3.1 we know that S(m,n,d) = G(u,v,d, 1) is a subgroup of H(—4k?d).
If d = 22 for some integer z, then (m + nz)(m — nx) = m? — dn? = —4. This yields
m =0 and so d € {1,4}. Now assume d # 1,4. Then d is a nonsquare integer. Note
that u? — dv? = —(2/(m,n))? and —d(u? — dv?) = d(2/(m,n))?. We then see that
u? — dv? and —d(u? — dv?) are nonsquare integers. Hence, by Theorem 3.1 we have
|S(m,n,d)| = |G(u,v,d,1)| = $h(—4k?d). This completes the proof.
Remark 6.1 Let d > 1 be a squarefree integer, and 4 = (m + nv/d)/2 with negative
norm. Then clearly m? — dn? = —4. So, if p=1 (mod 4) is a prime such that (g) =1,
it then follows from Theorem 6.2 that ¢4 is a quadratic residue (mod p) if and only if p
can be represented by one of the quadratic forms in the set S(m,n,d). This generalizes
all the special results scattered in the literature.
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For instance, let p = 1 (mod 4) be a prime, d € {2,5,10,13,17, 26,29, 37,41, 53} and

(%) = 1. Using Theorem 6.2 and the theory of reduced forms one can deduce that 4 is

a quadratic residue (mod p) if and only if p is represented by one of the corresponding
quadratic forms in Table 2.

Table 2

€4 Corresponding quadratic forms
g = 1 + 2 x? + 329
e5s = (1 + V/5) z? + 20y°
c10 = 34+ V10 22 4 160y2, 1322 + 6zy + 13y2
€13 = %(3—1—@) $2+52y2
e1r = 4+ V17 22 4+ 68y2, 422 + 174>

2 ) 2 )

cos — 5+ /3G x* +416y~, 21x” + 10xy + 21y~

522 + dxy + 84y?, 172 + 6xy + 251>

29 = 2(5 + V29)

22 4+ 116y2, 5x? & 4xy + 2412

E37 — 6+\/ﬁ

2?2 + 148>

€41 = 32+ 5v41

% 4 164y2, 422 + 41y?, 822 + 4oy + 21y

€53 = %(7—{— \/ﬁ)

2% 4+ 2122, 1322 + 62y + 171>

7. Applications to Lucas series.
For a,b € Z the Lucas sequences {u,(a,b)} and {v,(a,b)} are defined by

uo(a,b) =0, ui(a,b) =1, upy1(a,b) = buy(a,b) — aup—1(a,b) (n>1)
and

vo(a,b) =2, vi(a,b) =b, vyt1(a,b) =bv,(a,b) —av,—1(a,b) (n > 1).
Set d = b? — 4a. Tt is well known that

) wen= (TP ()} aro
and
(7.2) vn(a,b) = bzﬁl)” + (b_;/a)”.

Let p be an odd prime such that () =1 and p{d. In [Le] D.H. Lehmer showed that
D | u(pf(%))/g(a,b). Thus, if (#) = 1, then p | U(p_(—Tl))/2(a,b). Since ugy,(a,b) =
un(a,b)un(a,b) we see that p [ ug, (-1y),4(a,b) or p | v, _(=1)),,(a,b). Now, a natural
problem is to characterize those odd primes p such that p | Uip—(=L)), J(a,b).

Let a,b € Z, ad # 0, a = 2'ag(2 1 ag), and let a’ be the product of all the distinct
odd prime divisors of a (if ag = +1 we set ' = 1). From Definition 2.1 we see that

) if 2141,
s if 2 |t and 21 o
7.3) f(b,1,d) = @laoti+t)/2) " and F(b,1,d) = f(b,1,d).
S ) 1 if 2|t and 4 |b, ( ) (a/,b) ( )
T 2l tand 2 b
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Theorem 7.1. Let p be an odd prime, a,b € Z, d = b* —4a, ptad, p= Ax?+2Bxy +
Cy*(A,B,C,z,y €7Z), (A,2ap) = 1 and B> — AC = —k?d, where k = F(b,1,d) is given
by (7.3). Then

0 (mod p) if (B_Akbi)4 = +1,
(i) u, =1 (a,b) = { 2ky (-1 (2] if (B=kbi j
o T Az+By (?)(—a) i (mod p) if ( A )4 = =+,
) py = | T (mod p) if (B5) = +1,
() upgy (@)= F(—a)H] (mod p) f (B5R), = i,
_ [ i (B—kbi) _
(iii) v, (=1 (a,b) = £2(=a) (mod p) i (% .)4 =
y 0 (mod p) if (B_Akbl)4 = +i,
i(_?l)(—a)[g]b (mod p) if (B_Akbi)4 = 41,
(iv) V=1 (a,b) = { 1 (2] Az+By . ( B—kbi :
B i—(F)(—a) =5, (mod p) if (E2), = +i.

Proof. Let u = b, v =1 and s = (Ax + By)/(ky). Then clearly s> = —d (mod p)
since Ap = (Ax+ By)? +k?dy?. From the proof of Theorem 4.1 we see that (Ap,y) = 1.
Thus applying Theorem 2.1 and (7.3) we get

(s —;bi>4 _ (Ax+B;/+ kbyi>4 _ <B ;kbi>4-
From this and (2.9) we know that

(B — kbz’)Q _ <s + bi>2 _ <52 + b2> B <b2 — d) _ (a)
A Ja p /4 p p p/

Now combining the above with [S2, Theorem 2.1] and [S2, Corollary 2.1] gives the result.
We remark that Theorem 2.1 of [S2] can be deduced from Theorem 4.1. So one may

give a proof of Theorem 7.1 using Theorem 4.1 instead of [S2, Theorem 2.1].
From (7.3) one can verify the following lemma.

Lemma 7.1. Let a,b € Z, a(b® —4a) # 0, 2! || a, and

D) if 21t
4 if 2]t and 210,
0(a,b) = z if21a and 2 | b,

@ F -1

(2%) if2]t, 2|a and 2 |b.
32

Then

F(b,1,b* — 4a) | 6(a,b)a’/(a’,b) and 8| 5(a,b)*(b* — 4a),
where a' is the product of all the distinct odd prime divisors of a (if a = +2 we set
a =1).

Now we are able to prove the following general result.
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Theorem 7.2. Let p be an odd prime, a,b € Z, d = b* — 4a, and p | abd. If 6(a,b)
and ' are given in Lemma 7.1 and k = 6(a,b)a’/(a’,b), then p | u(,_(=1yy,4(a,b) if and

only if p is represented by one class in the set

G(a,b) = {[A,zB,C] | [A,2B,C] € H(—4k2d), (A,2a) =1, (kb;B% - 1}.

Moreover, G(a,b) is a subgroup of H(—4k?d); if a and a(4a—0b?) are nonsquare integers,
then |G(a,b)| = Th(—4k?d).
Proof. Set u = b and v = 1. Since p { abd we know that (see [R]) u,_(a(a,b) =
d

0 (mod p), wup(a,b) = () (mod p) and so u,,, (ay(a,b) # 0 (mod p). It is well known

that w,(a,b) | ugm(a,b) (see [R]). We thus have

p]u(p_(%l))m(a,b) — p|up_(%1)(a,b) = (%) = (g) = (%i) =1.

If p is represented by one class in the set G(a,b), we also have (_Td> = 1. So we may

assume (_Tfl) = 1. From (7.1) we see that

p—(5)

) " =1 (mod p).

p—(=H)
u 4+ vvd e b++d
rlo,aed = G572 -G

Hence applying Lemma 7.1 and Theorem 4.1 we see that p | u(p_(%l))/4(a,b) if and
only if p is represented by one class in G'(u,v,d, K), where K = k/F(u,v,d). Since
G(a,b) = G'(u,v,d,K), u? — dv?> = 4a and —d(u? — dv?®) = 4a(4a — b?), applying
Theorem 3.1 we obtain the result.
Remark 7.1 If m € Z — {0}, m | b, m? | a and p is a prime such that p { m, it
follows from (7.1) that p | up(a,b) if and only if p | u,(:%, 2). Sometimes, using this
observation we may decrease the discriminant of required quadratic forms.

Putting a = —1 in Theorem 7.2 we obtain the following result, which was announced

in [S2].

Corollary 7.1. Let p be a prime of the form 4m + 1, b € Z — {0}, up = 0, u; =1

and Upy+1 = buy, + up—1 (n > 1). Then p | Up_t if and only if p is represented by

some primitive, integral form Axz®+2Bxy+ Cy? of discriminant —4(3 — (—1)%)%(b% +4)

with the condition that 21 A and (%b)b"i_&)4

these primitive quadratic forms form a subgroup of index 4 in H(—4(3—(—1)°)2(b%2+4)).
(p—(F))/4

= 1. Moreover, the classes containing

8. Criteria for ¢ (mod p).
Let d > 1 be a squarefree integer, and let e4 = (m +n+/d)/2 be such that N(g4) = 1.
(=t
Then m? — dn? = 4. In this section we determine 5((:lp 5/ (mod p), where p is an

odd prime.
One can easily prove
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Lemma 8.1. Let m,n,d € Z with dn # 0 and m? — dn? = 4. Then

m —+ n\/E _ (n,'r:LL—Q)\/a_I_ (n?p:n_—22) . (nT,nTr—L‘FEQ) + (n,T:LL—i—Q)\/C_l

() 7 _ |
n __ m— m+2 n
2 (n,m—2) \/C_Z (n,m—2) (n,m+2) (n,m+2) \/C_i
(ii) orda(m — 2) > ordan  or ords(m + 2) > ordan.

If m,n,d € Z, dn # 0 and m? — dn? = 4, by Lemma 8.1 and the fact that ords(m +
2) = orda(—m — 2) we may choose the sign of m such that ords(m — 2) > ordan.

Suppose ords(m — 2) > ordan, m — 2 = 2%mg(2  mo) and n = 2°ny(2 t ng). Using
Definition 2.1 we can deduce that

( (4,m08—1—a) ifa:ﬁ’
4 ifa=0+1=1 (mod 2),
m— 2 n 2(2,d) . _ _
F( , ,d>: Adtmo—i—a) lfOé—ﬁ—i—l:O mod?,
(n,m—2)" (n,m —2) (4’d—; o) ) ( )
sed2.da) ifa=p5+2,
| o9 if a > p+3.

From this and the fact that o — 3 = ordad + 3 — orda(m+2) one can verify the following
result by considering the following six cases: (1) 8 | n, (2) 22 || n (so 4 | m — 2 and
2|d),(3)2||nand 24d (so4|mand4|d—3), (4) 2| nand 2|d (so4|m—2and
8|d), (5)2tnand 2{d (so2{mand 8|d—>5),(6)21nand 2|d (so2|mand4]|d).
Lemma 8.2. Let m,n,d € Z, dn # 0, m? —dn® = 4, and ords(m — 2) > ordan. If
g(m,n,d) is given by Table 3, then

F((m—-=2)/(n,m—2),n/(n,m—2),d) = g(m,n,d).

Table 3
d g(m,n,d)| Corresponding conditions
4 27 || d, 2tn
22 | n, 8| m+2
d=0 d4 !
mod )1 o P d 2w
I Otherwise
1 8S[d—5, 2fn, 4|m—1
d=1 (mod 4) 8]d—5,2tn, 4|m+1
2 8| n
4 22 | n
d =2 (mod 4) 2 2° | n
1 16 [ n
8 2
d =3 (mod 4) 5 8”] Z
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Theorem 8.1. Let p be an odd prime, and let m? —dn? = 4 with m,n,d € Z and p { dn.
We choose the sign of m so that orde(m — 2) > ordan. Let g(m,n,d) € {1,2,4,8} be
given by Table 3, and k = Kg(m,n,d) with K € Z and p1 K.

(1) Assume that p = ax®+2bxy+cy?(a,b,c,z,y € Z), b*—ac = —k*d,(a, 2Kp%)
=1andj € {0,1,2,3}. Then

p*(%% bn m—2

(P5) T = (2 G ) o (T

;1
(2) Suppose that (_Tfi) =1 and § = +1. Then (W)(p_( P/ — (mod p) if
and only if p is represented by some class in the set Li(m,n,d, K) or Lo(m,n,d, K)
according as (%) =0 = —1 or not, where L;j(m,n,d, K)(j =0,1) are given by

Li(m,n,d, K)=1<[a,2b,c] | ged(a,2b,¢) =1, (2b)? — dac = —4k?d,
j

(a 2K (8 - 4m)) _1 ((n,fr?—m - ’“(n?lm_fmi) _ (_1)]}_
4

" (n,m — 2)2 a

Moreover, Lo(m,n,d, K) is a subgroup of H(—4k?d); if 2—m and 2+m are nonsquare
integers, then |Lo(m,n,d, K)| = |Li(m,n,d, K)| = 1h(—4k*d).

Proof. Let u = (m—2)/(n,m—2) and v = n/(n,m—2). Then clearly (u,v) =1, v # 0
and u? — dv? = (8 — 4m)/(n,m — 2)? # 0 (mod p) since p { dn. From Lemmas 8.1 and
)

8.2 we see that F'(u,v,d) = g(m,n,d) and
p—(Zh) p—(ZH)
(vﬁ%—u) 7 . (m—i—n\/E) g
vd—u 2
In addition, as m? — dn? = 4 we have
p—(Zh) p—(Zh)
<m—i—n\/c_i> 3 (m—n\/c_l> T
2 2 -
Thus applying Theorem 4.1 we obtain (1). By (1),
p—(=H) bn m-2 1-5
5 d 4p n.m— - k n.m— ? 2 2
(St VDT ) od ) e (TR Nty (2
2 a 4 p

Hence (2) follows from (1), Theorem 3.1 and the proof of Theorem 4.1.

Corollary 8.1. Let p = 1 (mod 4) be a prime, m,n,d € Z, m? — dn? = 4
and (%) = 1. We choose the sign of m so that orda(m — 2) > ordan. For ¢
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(6m + n\/E)/Q is a quartic residue (mod p) if and only if p is represented by one class
2

in the set L1(m,n,d,1) or Lo(m,n,d,1) according as (3) =6 = —1 or not.

Proof. Taking K = 1 in Theorem 8.1 and then using Euler’s criterion leads to the
result.

Let m,n,d € Z, m? —dn® = 4, dn # 0 and ordy(m + 2) > ordan. From Definition
2.1 and Lemma 8.2 we see that

F<(n7;nm+—|—22)’ (n,n”TLL—i— 2)’ d) - F((n,_inm__zm’ (n, —:1 P d) = g(—m,n,d).

Thus one can easily deduce

Lemma 8.3. Let m,n,d € Z, m? —dn? = 4, dn # 0 and orda(m + 2) > ordan. If

2 if8|d, 8| m—2and8|n—4,
d(n,d) otherwise

g'(m,n,d) = {

and 6(n,d) is given by Table 4, then

F((m+2)/(n,m+2),n/(n,m+2),d) | ¢ (m,n,d) and 8|g'(m,n,d)?d.

Table 4
d d(n,d) Corresponding conditions
_ 2 2° | d, 2| n
d =0 (mod 8) 1 Otherwise
4 2
d =4 (mod 8) 5 5 J‘( Z
d=1 (mod 4) 4
4 2
d =2 (mod 4) 5 g‘ﬂbn
2
d =3 (mod 4) i 3 |Hnn

Theorem 8.2. Let p be an odd prime, m,n,d € Z, m? —dn® = 4, p { dn, and
orda(m + 2) > ordan. Let g'(m,n,d) be given in Lemma 8.3.
(1) Assume that

p =ax? + 2bxy + cy?(a,b,c,x,y € Z), b* —ac= —g' (m,n,d)*d,

8+ 4
(a,2p +4m

— ) =1 and je€{0,1,2,3}.
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Then

p—(=H)
m—+nvdy\ —=* -1 ax + by J
mtnvad = (=) 2 V) (mod
( 2 ) (( P )g’(m,n,d)dy\/_ (mod p)
m+2 ! bn
— <<”m+m9("“””b’+(mm+%l> — .
a 4

(2) Suppose that (%d) =1. Then (M)(p_(%))/ll =1 (mod p) if and only if p is
represented by one class in the set

M(m,n,d) :{[a, 2b, c] | ged(a,2b,¢) =1, (2b)* — dac = —4g'(m, n, d)*d,

( 2(8+4m))_ (mf”sz)g'(mm’d)*m&—"mi) 1)
) - 4_ *

¢ (n,m+ 2)2 a

Moreover, M(m,n,d) is a subgroup of H(—4g' (m,n,d)?d); if 2 — m and 2 + m are
nonsquare integers, then |M(m,n,d)| = 1h(—4g' (m,n,d)?d).

Proof. Let u = (m +2)/(n,m +2), v = n/(n,m + 2) and k = ¢’(m,n,d). Then
clearly (u,v) = 1, v # 0 and u? — dv?® = (8 + 4m)/(n,m + 2)? # 0 (mod p). From
Lemmas 8.1 and 8.3 we know that

u+vvd _om+ nVd
uw—vvVd 2 ’
So the result follows from Theorems 4.1 and 3.1.

Lemma 8.4. Suppose a,b,c,d,k,m,n € Z, dn # 0, m?—dn? = 4, (2b)?—4ac = —4k?d
and (a,2b) = 1. Then

|

=

F(u,v,d) | k and 8| k?d.

8 —4m 8+ 4m
- o STy (g By
(i) <a (n,m —2)? ¢ (n,m+ 2)?
m+2 bn . bn . m—2 -
(i) <k i iy _ (D b ms)
a 4 a 4

Proof. Let d = 207d2dq, m — 2 = 20vda(m=2)pp 4y 4 9 = gorda(m+2)y. and n =
20rd2npy - Since

8t4m  (m=£2)? n? c7
(n,m+2)2  (n,m=+2)2 (n,m £ 2)2 ’
_Am =8 gordeitiTm Mo g AMES gerdemiiy M
(n,m — 2)? (Mo, no)? (n,m + 2)? (m1,m0)?

we see that both mg/(mo,ng)? and m1/(my,ng)? are integers. From the fact that
m? — dn? = 4 we find mgm; = don%. Thus,

A_“L)? and mL_d(L)Q
(mo,no)2 0 (m0>n0) O(m1,n0)2 0 (mhno) '
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Observing that

<(m:77(;0)2’ (m:,0n0)> N <(mT;0)27 (miono)) =L

we get
o 7 | o and i

(mo, no

Notice that (a, k%d) = (a,ac — b*) = (a, —b?) = 1 and so (a,do) = (a, k) = 1. Then we
obtain

dg.
(ml,no)2| 0

<a, (le—;O)Q> = (a, (771177,1—7110)2> =1 and so (a,2k%> =1.

This proves (i).
Now consider (ii). Observe that

<<b—n>)2 e K2d)n® + k2 (m £ 2)°

n,m =+ 2 (n,m 4+ 2) (n,m +2)2
—k%(m? —4) + k*(m £ 2)2 (8 & 4m)k? (mod |a])
= = mod |al).
(n,m =+ 2)? (n,m =+ 2)2
In view of (i) we find
b 2 +2)\2
(0 () + (o)) =
(n,m=+2) (n,m=+2)
and hence ) ) o )
(<n,m 2~ ") 2))( (r.m+2) <,+2>> 40,
a 4 a 4
To see the result, we note that
bn m—2 - m-+2 bn N
(n,m—2) k(n,m—2)Z k(n,m+2) + (n,m+2)2 !
a 4 a 4
bn m—2 m-+2 bn .
_ (n,m—2) k(n,m—?)z k(n,m—l—Q) - (n,m—|—2)Z
a 4 a 4
(bn—k(m—2)i)(k(m+2)—bni) 4kbn . kQ(m2—4)+b2n2Z~
_ ( (n,m—2)(n,m+2) ) _ ((n,m—Z)(n,m—i—Q) (n,m—2)(n,m+2) )
a 4 a 4
4kbn n? . 4kbn
_ (n,m—2)(n,m+2) o (n,m—2)(n,m+2) act _ (n,m—2)(n,m+2) -1
a 4 a 4 .

(observe that m? — 4 = dn? and b — ac = —k?d)

This completes the proof.
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Theorem 8.3. Let p be an odd prime, m,n,d € Z, m?> —dn® = 4, p { dn, and let
d(n,d) € {1,2,4,8} be given by Table 4.

(1) Assume that p = ax?® + 2bxy + cy*(a,b,c,x,y € Z), (a,2bp) = 1, b?> — ac =
—8(n,d)?d and j € {0,1,2,3}. Then

p*(%l)

ey E<<%>%m)j (mod p)
o U
a 4

(2) Assume that (_Tfl) = 1. Then (m+;\/3)(p_(—71))/4 = 1 (mod p) if and only if
p is represented by some class in the set Nj(m,n,d), where j € {0,1} is given by

p=(—1)7 (mod 4) and

N;(m,n,d) :{[a, 2b,c] | b* — ac = —d(n,d)*d, a=(—-1)7 (mod 4),

(a,b) =1, (% _5(:’d)%i)4 ~1}

Moreover, if 2 —m and 2+ m are nonsquare integers, then No(m,n,d) is a subgroup of

index 4 or 8 in H(—46(n,d)?d).

Proof. Set k = d(n,d). We first prove (1). Let us consider the following three cases:

CASE 1. ordy(m —2) > ordan and g(m,n,d) | §(n,d). In this case, applying Lemma
8.4(i) and Theorem 8.1 we obtain the result.

CASE 2. ords(m — 2) > ordan and g(m,n,d) 1 d(n,d). Comparing Tables 8.1
and 8.2 we find 8 | d, 22 | n and 8 | m + 2. So ordz(m + 2) > 3 > orden and
d(n,d) = g'(m,n,d) = 1. Now applying Lemma 8.4 and Theorem 8.2 yields the desired
result.

CASE 3. ordy(m — 2) < ordan. In this case we have ords(m +2) > ordan by Lemma
8.1. From Lemma 8.3 we have §(n,d) = ¢’(m,n,d). So the result follows from Lemma,
8.4 and Theorem 8.2.

Now consider (2). Let N(m,n,d) = No(m,n,d) U Ny(m,n,d). If p = ax?® + 2bxy +
cy?(a,b,c,x,y € Z) with a = 1 (mod 2) and b*—ac = —k?d, then ap = (ax+by)*+k3dy>.
Since 8 | k2d by Table 8.2, we see that az + by = 1 (mod 2) and so ap = (ax + by)? =
1 (mod 8). Hence we have a = p (mod 8). Thus for j € {0,1}, p = (—1)7 (mod 4) is
represented by some class in N (m,n,d) if and only if p is represented by some class in
N;(m,n,d). By the proof of (1), either orda(m — 2) > ordsn and g(m,n,d) | (n,d), or
orda(m + 2) > ordan and d(n,d) = ¢’'(m,n,d).

If orda(m — 2) > ordan and k = Kg(m,n,d) for some integer K, it follows from
Theorem 8.1 that (%ﬁ)(p_(%))/4 = 1 (mod p) if and only if p is represented by
one class in the set Lo(m,n,d, K), where Lo(m,n,d, K) is given in Theorem 8.1. Let
u = (m—2)/(n,m —2) and v = n/(n,m — 2). Then (u,v) = 1 and u? — dv? =
(8 — 4m)/(n,m — 2)%. From Lemma 8.2 we know that F(u,v,d) = g(m,n,d). Thus
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k = KF(u,v,d). Suppose that (a,2b,c) is a primitive quadratic form such that (2b)% —
dac = —4k*d, (a,2K(8—4m)/(n,m—2)?) =1 and (W)4 = 1. By Lemma 3.1 there
is a primitive quadratic form (a’, 2, ¢’) satisfying (a’,2d) = 1 and (a, 2b,¢) ~ (a’, 20, ).
Since (a,2b,c) ~ (a’,2V,¢") we have (2b')% — 4a’c’ = (2b)? — 4ac = —4k?d. Therefore
(a’,2d) = 1 if and only if (a’,20') = 1. From Lemma 8.4 we see that (a’,20') = 1
implies that (a’,2k(8 — 4m)/(n,m — 2)?) = 1. Thus using Corollary 2.1 we obtain
(%)4 = (W)4 = 1. So we have N(m,n,d) = Lo(m,n,d, K). Hence combining
the above, Theorem 8.1 and Lemma 3.4 gives the result.

If ordy(m + 2) > ordan and 0(n,d) = g'(m,n,d), it follows from Theorem 8.2 that
(M)(p_(%))/‘l = 1 (mod p) if and only if p is represented by one class in the set
M(m,n,d). Set v’ = (m +2)/(n,m+2) and v =n/(n,m +2). Then (v',v") =1 and
u'? — dv'> = (8 + 4m)/(n,m + 2)2. By Lemma 8.3 we have F(u/,v',d) | k and 8 | k2d.
Now, using Lemma 8.4, Theorem 3.1 and the above method, one can similarly prove
that

In view of Lemma 8.4 we see that M (m,n,d) = N(m,n,d). Hence the result follows
from the above, Theorem 8.2 and Lemma 3.4.

By the above we see that (2) is true. Hence the proof is complete.

Now using Corollary 8.1, Theorems 8.2, 8.3 and doing some calculations we have

Theorem 8.4. Let p be a prime of the form 4k+1, d € {3,6,7,11,14,15,19,21, 22,23,
30,31, 33,34, 35, 38,39,42,43,46,47}, and let 4 be the fundamental unit of the quadratic
field Q(v/d). Then eg4 is a quartic residue (mod p) if and only if p is represented by one
of the corresponding quadratic forms in Table 5.
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Table 5

€d Corresponding quadratic forms

e3 = 2 + /3 2 + 192>

g6 = b + 2V6 22 + 967>

e = 8 + 37 z2 + 448y

en = 10 + 3V11 z2 + 704y?, 9z2 + 8y + 80y>

€14 = 15 + 4\/ﬁ 2 +56y2

e5 = 4 + V15 22 + 960y, 2022 + 20zy + 53y

c19 = 170 + 3919 22 + 121692, 1722 + 102y + 73y>

esr = 3(5 + V21) x? + 336y%, 212 + 1632

€20 = 197 + 42V/22 z? + 352y

g3 = 24 + 5V23 z? + 147292, 4122 + dzy + 36y

es0 = 11 + 230 x? 4 480y2, 5x% + 963>

e31 = 1520 + 273v/31 22 + 1984y?%, 4122 + 10zy + 49y2

£33 = 23 + 433 x? + 528y, 1622 + 16y + 37y

es4 = 35 + 6V34 x2 + 544y?, 1722 + 32y>

i — 64+ VE x22—|— 2240yz, 139@2 + 6y + 173yz,
dx” + 448y~°, 36x° £ 20zy + 65y

e3s = 37 + 638 x? + 608y>, 9x2 + dxy + 681>

£s9 = 25 + 44/39 x? 4 156y

cr0 = 13 + 2V42 22 + 672y%, 21z2 + 322

€43 = 3482 + 531/43 x? + 2752y2, 4122 + 122y + 68y

€46 = 24335 + 35881/46 x? + 736y2, 4x2 + 4xy + 185y
z% + 3008y?, 36z° + 28zy + 89y,

e = 48+ TVAT 4922 + 362y + 6812

In the end we pose some conjectures.

Conjecture 8.1 If m,n,d € Z, m? —dn? = 4 and if 2 — m and 2 + m are nonsquare
integers, then |No(m,n,d)| = h(—48(n, d)?d).

For discriminant D let Hy(D) = {[a,b,c]* | [a,b,c] € H(D)} and hy(D) = |H4(D)].
Conjecture 8.2 Let p be a prime of the form 8k + 1. Then hy(—8p) = hy(—128p) =
h(—8p)/4.

Conjecture 8.3 Let p be a prime of the form 24k+1. Then hy(—24p) = hy(—384p) =
h(—24p)/8.

Conjecture 8.4 Let p and ¢ be primes of the form 4k + 1 such that (g) = 1. Then
ha(—4pq) = ha(—64pq) = h(—4pq)/8.

Conjecture 8.5 Let p and ¢ be distinct primes of the form 8%k + 1. Then

Lh(-8pg) if (2)=1,
%h(—8pq) if (g) = —1.

Conjecture 8.6 Let d > 2 be a squarefree integer. If hy(—64d) is odd, then hy(—64d)
= hy(—4d).

ha(—8pq) = ha(—128pq) = {
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