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Abstract. Let p ≡ 1 (mod 4) be a prime, m ∈ Z and p - m. In this paper we obtain
a general criterion for m to be a quartic residue (mod p) in terms of appropriate binary

quadratic forms. Let d > 1 be a squarefree integer such that ( d
p
) = 1, where ( d

p
) is the

Legendre symbol, and let εd be the fundamental unit of the quadratic field Q(
√

d). Since
1942 many mathematicians tried to characterize those primes p so that εd is a quadratic
or quartic residue (mod p). In this paper we will completely solve these open problems

by determining the value of (u + v
√

d)
(p−(−1

p
))/2

(mod p), where p is an odd prime,

u, v, d ∈ Z, v 6= 0, gcd(u, v) = 1 and (−d
p

) = 1. As an application we also obtain a

general criterion for p | u
(p−(−1

p
))/4

(a, b), where {un(a, b)} is the Lucas sequence defined

by u0 = 0, u1 = 1 and un+1 = bun − aun−1 (n ≥ 1).

MSC: 11A15, 11E25, 11B39.
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1. Introduction.
Let Z be the set of integers, i =

√−1 and Z[i] = {a + bi | a, b ∈ Z}. We recall that
a + bi is primary when b ≡ 0 (mod 2) and a + b ≡ 1 (mod 4). If π or −π is primary and
α ∈ Z[i], one can define the quartic Jacobi symbol

(
α
π

)
4

as in [S1].
For a, b, c ∈ Z denote the binary quadratic form ax2 + bxy + cy2 by (a, b, c), and

denote the (proper) equivalent class that contains the form (a, b, c) by [a, b, c]. The
discriminant of (a, b, c) is the integer d = b2−4ac, only positive-definite forms are taken
if d < 0. If an integer n is represented by (a, b, c), then n is also represented by any
form in the class [a, b, c]. So we may say that n is represented by the class [a, b, c]. For
D ≡ 0, 1 (mod 4) let H(D) be the form class group which consists of primitive, integral
binary quadratic forms of discriminant D, and let h(D) = |H(D)| be the corresponding
class number.

Let p ≡ 1 (mod 4) be a prime, and m ∈ Z with p - m. The basic problem of quartic
residues is to characterize those primes p for which m is a quartic residue (mod p). In
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1828 Gauss proved the following Euler’s conjecture: 2 is a quartic residue (mod p) if
and only if p = x2 + 64y2(x, y ∈ Z). Here one may ask a natural question: how to
generalize the result to an arbitrary integer m? When q is an odd prime different from
p, the author proved in [S1] that (−1)(q−1)/2q is a quartic residue (mod p) if and only if
p is represented by one of the fourth powers (under composition) of primitive quadratic
forms of discriminant −16q2. In Section 5 of this paper we will completely solve the
above problem by proving the following result.

(1.1) Suppose that m′ is the product of all the distinct odd prime divisors of m ∈ Z,
m = 2αm0(2 - m0) and m∗ = 4m′/(4,m0−α−1), where (n1, n2) is the greatest common
divisor of n1 and n2. If p ≡ 1 (mod 4) is a prime such that p - m, then m is a quartic
residue (mod p) if and only if p is represented by one class in the set

G(m) =
{

[a, 2b, c]
∣∣ gcd(a, 2b, c) = 1, (2b)2 − 4ac = −16m∗2, a > 0,

a ≡ 1 (mod 4), (a,m) = 1,
( (m + 1)b− 2m∗(m− 1)i

a

)
4

= 1
}

.

Moreover, if m and −m are nonsquare integers, then G(m) is a subgroup of index 4 in
the form class group H(−16m∗2).

Let d > 1 be a squarefree integer, and εd = (m + n
√

d)/2 be the fundamental unit of
the quadratic field Q(

√
d). Suppose that p ≡ 1 (mod 4) is a prime such that (d

p ) = 1,
where (d

p ) is the Legendre symbol. One may ask a question: how to characterize those
odd primes p so that εd is a quadratic or quartic residue (mod p)?

When the norm N(εd) = (m2 − dn2)/4 = −1, many mathematicians tried to
characterize those primes p (p ≡ 1 (mod 4), (d

p ) = 1) for which εd is a quadratic
residue (mod p). In 1942 Aigner and Reichardt[AR] proved that ε2 = 1 +

√
2 is a qua-

dratic residue of a prime p ≡ 1 (mod 8) if and only if p = x2 + 32y2(x, y ∈ Z). In 1969,
Barrucand and Cohn [BC] rediscovered this result. Later, Brandler[B] showed that for
q = 5, 13, 37 the unit εq is a quadratic residue of a prime p (p ≡ 1 (mod 4), ( q

p ) = 1) if
and only if p = x2 + 4qy2(x, y ∈ Z). For more special results along this line one may
consult [CI], [L], [LW1], [LW2], [FK], [H1], [H2], [HI] and [Lem, pp.168-170]. In Section
6 of this paper we will completely solve the problem by presenting the following general
result.

(1.2) Suppose that p ≡ 1 (mod 4) is a prime, d,m, n ∈ Z, m2−dn2 = −4 and (d
p ) = 1.

Then (m + n
√

d)/2 is a quadratic residue (mod p) if and only if p is represented by one
class in the set

S(m,n, d) =
{

[a, 2b, c]
∣∣ [a, 2b, c] ∈ H(−4k2d), a ≡ 1 (mod 4),

(bn− kmi

a

)
4

= 1
}

,

where

k =





1 if d ≡ 4 (mod 8),
2 if d ≡ 0 (mod 8) or d ≡ 1 (mod 2),
4 if d ≡ 2 (mod 4).
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Moreover, if d 6= 1, 4, then S(m,n, d) is a subgroup of index 4 in H(−4k2d).
When the norm N(εd) = 1, how to characterize those primes p (p ≡ 1 (mod 4), (d

p ) =
1) in terms of binary quadratic forms so that εd is a quartic residue (mod p)? In 1974,
using the cyclotomic numbers of order 12, E. Lehmer[L] proved that ε3 = 2 +

√
3 is a

quartic residue of a prime p ≡ 1 (mod 12) if and only if p = x2 +192y2 for some integers
x and y. She also conjectured that ε7 = 8 + 3

√
7 is a quartic residue of p if and only if

p = x2+448y2 for some integers x and y. In 1977, P.A. Leonard and K.S. Williams[LW1]
proved Lehmer’s conjecture and gave some additional special results. However, their
method made them only succeed for the 21 imaginary bicyclic biquadratic fields having
class number 1 and containing Q(

√−1), Q(
√−2) or Q(

√
2) as a subfield. So they barely

obtained partial results in the cases d = 3, 7, 11, 19, 43, 67, 163, 6, 14, 22, 38, 86, 134. In
Section 8 we will completely solve the problem by proving the following general result.

(1.3) Suppose that p ≡ 1 (mod 4) is a prime, m,n, d ∈ Z, m2 − dn2 = 4, p - n and
(d

p ) = 1. Then (m + n
√

d)/2 is a quartic residue (mod p) if and only if p is represented
by one class in the set

N0(m,n, d) =
{

[a, 2b, c]
∣∣ b2 − ac = −δ(n, d)2d, a ≡ 1 (mod 4),

(a, b) = 1,
( bn

(n,m−2) − δ(n, d) m−2
(n,m−2) i

a

)
4

= 1
}

,

where δ(n, d) ∈ {1, 2, 4, 8} is explicitly given by Table 4. Moreover, N0(m,n, d) is a
subgroup of H(−4δ(n, d)2d).

Let d > 1 be a squarefree integer such that N(εd) = 1, and let p ≡ 3 (mod 4) be
a prime with (−d

p ) = 1. In the book “Reciprocity laws: From Euler to Eisenstein” F.
Lemmermeyer[Lem, p.418] proposed some open problems. The fourth problem is to
determine ε

(p+1)/4
d (mod p) in terms of appropriate binary quadratic forms. In Section

8 we will also solve this open problem.
For a, b ∈ Z the Lucas sequences {un(a, b)} and {vn(a, b)} are defined below:

u0(a, b) = 0, u1(a, b) = 1, un+1(a, b) = bun(a, b)− aun−1(a, b) (n ≥ 1);

v0(a, b) = 2, v1(a, b) = b, vn+1(a, b) = bvn(a, b)− avn−1(a, b) (n ≥ 1).

Let p be an odd prime such that (a
p ) = ( 4a−b2

p ) = 1. It is well known that (see [Le])
p | u(p−(−1

p ))/4(a, b) or p | v(p−(−1
p ))/4(a, b). How to characterize those odd primes

p so that p | u(p−(−1
p ))/4(a, b)? Suppose that p ≡ 1 (mod 4) is a prime and that

{Fn} (Fn = un(−1, 1)) is the Fibonacci sequence. In [SS] the author and his brother
Zhi-Wei Sun showed that p | F p−1

4
if and only if p = x2 + 5y2 6= 5 with x, y ∈ Z and

4 | xy. Let Pn = un(−1, 2) be the Pell sequence. In 1974 E. Lehmer showed that
p | P p−1

4
if and only if p = x2 + 32y2 for some x, y ∈ Z (see [L],[S3]). Recently the

author[S2] showed that p | u p−1
4

(−1, 3) if and only if p 6= 13 is represented by x2 +208y2

or 16x2+13y2. In [S2] the author also proved the following result: Let p ≡ 1 (mod 4) be
3



a prime, 2 - b, b2+4 6= p, and let p be represented by x2+16(b2+4)y2 or 16x2+(b2+4)y2.
Then p | u p−1

4
(−1, b).

In Section 7 we will solve the above problem by proving the following general result.
(1.4) Let p be an odd prime, a, b ∈ Z, p - a(b2 − 4a), and let a′ be the product of all

the distinct odd prime divisors of a. If a = 2ta0(2 - a0),

δ(a, b) =





8
(8,b) if 2 - t,
4 if 2 | t and 2 - b,

2
(2, a+1

2 · b
2−1)

if 2 - a and 2 | b,
2

(2, b
2 )

if 2 | t, 2 | a and 2 | b,

and k = δ(a, b)a′/(a′, b), then p | u(p−(−1
p ))/4(a, b) if and only if p is represented by one

class in the set

G(a, b) =
{

[A, 2B, C]
∣∣ [A, 2B,C] ∈ H(−4k2(b2 − 4a)), (A, 2a) = 1,

(kb + Bi

A

)
4

= 1
}

.

Moreover, if a and a(4a−b2) are nonsquare integers, then G(a, b) is a subgroup of index
4 in H(−4k2(b2 − 4a)).

Now we point out that (1.1)–(1.4) can be inferred from the following main result of
the paper (see Theorem 4.1).

(1.5) Suppose that p is an odd prime, u, v, d ∈ Z, (u, v) = 1, v 6= 0, (−d
p ) = 1,

p - u2 − dv2 and k = F (u, v, d), where F (u, v, d) is defined by Definition 2.1. Then(
v
√

d+u
v
√

d−u

)(p−(−1
p ))/4 ≡ 1 (mod p) if and only if p is represented by one class in the set

G(u, v, d) =
{

[a, 2b, c]
∣∣ [a, 2b, c] ∈ H(−4k2d), (a, 2(u2 − dv2)) = 1,

(bv − kui

a

)
4

= 1
}

.

Moreover, G(u, v, d) is a subgroup of H(−4k2d); if u2 − dv2 and −d(u2 − dv2) are
nonsquare integers, then |G(u, v, d)| = 1

4h(−4k2d).
Throughout this paper we use the following notation:
N the set of natural numbers, Q the set of rational numbers, Z[i] = {a + bi |

a, b ∈ Z}, εd the fundamental unit of the field Q(
√

d), |x| the absolute value of x,
[x] the greatest integer not exceeding x, m | n m divides n, m - n m does not di-
vide n, pα ‖ n pα | n but pα+1 - n, ordpn the nonnegative integer s such that ps ‖ n,
(m,n) the greatest common divisor of m and n, gcd(n1, n2, n3) the greatest com-
mon divisor of n1, n2, n3, [n1, . . . , nk] the least common multiple of n1, n2, . . . , nk,(

a
m

)
the quadratic Jacobi symbol,

(
α
π

)
4

the quartic Jacobi symbol, (a, b, c) the
quadratic form ax2 + bxy + cy2, (a, b, c) ∼ (a′, b′, c′) the form (a, b, c) is (properly)
equivalent to the form (a′, b′, c′), [a, b, c] the equivalent class that contains the form
(a, b, c), H(D) the form class group which consists of equivalence classes of prim-
itive, integral binary quadratic forms of discriminant D, h(D) the order of H(D),
H4(D) the subgroup of H(D) consisting of the fourth powers of the classes in H(D),
Ker χ the kernel of the group character χ.
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2. Computing the quartic Jacobi symbol
( (ax+by)v+kuyi

ax2+2bxy+cy2

)
4
.

If π or −π is primary in Z[i], then we may write π = ±π1 · · ·πr, where π1, . . . , πr

are primary primes. For α ∈ Z[i] the quartic Jacobi symbol
(

α
π

)
4

is defined by
(α

π

)
4

=
( α

π1

)
4
· · ·

( α

πr

)
4
,

where
(

α
πs

)
4

is the quartic residue character of α modulo πs (see [IR, p. 122]).
For later convenience we also define

(a + bi

1

)
4

=
(a + bi

−1

)
4

= 1 for all a, b ∈ Z.

According to [IR, pp. 122-123, 311], [BEW, pp. 242-243, 247] and [S1] the quartic
Jacobi symbol has the following properties:

(2.1) If a + bi is primary in Z[i], then
( i

a + bi

)
4

= i
a2+b2−1

4 = i
1−a
2 and

( 1 + i

a + bi

)
4

= i
a−b−b2−1

4 .

(2.2) If α and π are relatively prime primary elements of Z[i], then
(α

π

)
4

=
(α

π

)−1

4
=

(
α

π

)

4

,

where x is the complex conjugate of x.
(2.3) If a + bi and c + di are relatively prime primary elements of Z[i], then we have

the following general law of biquadratic reciprocity:
(a + bi

c + di

)
4

= (−1)
a−1
2 · c−1

2

(c + di

a + bi

)
4
.

(2.4) If m, n ∈ Z, 2 - m and (m,n) = 1, then
(

n
m

)
4

= 1.
(2.5) If π or −π is primary and α, β ∈ Z[i], then

(
αβ
π

)
4

=
(

α
π

)
4

(
β
π

)
4
.

(2.6) If π1 and π2 are primary and α ∈ Z[i], then
(

α
π1π2

)
4

=
(

α
π1

)
4

(
α
π2

)
4
.

Since −1 = i2 and 2 = i3(1 + i)2, using (2.1) and (2.5) one can easily derive that
(2.7) If a + bi is primary in Z[i], then

( −1
a + bi

)
4

= (−1)
b
2 and

( 2
a + bi

)
4

= i−
b
2 .

Using (2.3) and (2.7) one can also easily prove
(2.8) If a, b, p ∈ Z with 2 - ap, 2 | b and (p, a2 + b2) = 1, then

( p

a + bi

)
4

= (−1)
p−1
2 · b

2

(a + bi

p

)
4
.

From [S4, Proposition 1] or [S1, Lemma 2.1] we have
(2.9) Let p be a positive odd number, m,n ∈ Z and (m2 + n2, p) = 1. Then

(m + ni

p

)2

4
=

(m2 + n2

p

)
.

For later convenience we now introduce the following notation.
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Definition 2.1. Suppose u, v, d ∈ Z, dv(u2 − dv2) 6= 0 and (u, v) = 1. Let u2 − dv2 =
(−1)r2sW, W ≡ 1 (mod 4), and let w be the product of all the distinct prime divisors
of W (if W = 1 we set w = 1) . Then define

f(u, v, d) =





[
8

(8,u) ,
2

(2,d)

]
2ord2v if 2 - s,

4
(2,r+s/2)2

ord2v if 2 | s and 2 - u,
2

(2,d) if 2 | s and 4 | u,
2(2,d)

(4,d+2r+s+2) if 2 | s and 2 ‖ u

and
F (u, v, d) =

w

(u,w)
f(u, v, d).

We are now in a position to give the following key result, which plays a central role
in the paper.

Theorem 2.1. Suppose u, v, d ∈ Z, dv(u2−dv2) 6= 0 and (u, v) = 1. If a, b, c,K, x, y ∈
Z, k = KF (u, v, d), b2−ac = −k2d and (a(ax2 +2bxy+cy2), 2Ky(u2−dv2)) = 1, then

( (ax + by)v + kuyi

ax2 + 2bxy + cy2

)
4

=
(bv − kui

a

)
4
.

Proof. Let r, s, w, f(u, v, d) and F (u, v, d) be given by Definition 2.1. Since F (u, v, d) =
w

(u,w)f(u, v, d), w | u2 − dv2 and (a(ax2 + 2bxy + cy2), 2Ky(u2 − dv2)) = 1 we see that
(a(ax2 + 2bxy + cy2), F (u, v, d)) = 1 and hence

(a(ax2 + 2bxy + cy2), 2ky(u2 − dv2)) = 1.

Now we claim that

(2.10)
w

(u,w)

∣∣∣ k, 2 | kd, 2
∣∣∣ ku

(k, v)
and 4

∣∣∣ ksu

(k, v)
.

Clearly w
(u,w) | k since w

(u,w) | F (u, v, d) and F (u, v, d) | k. From the definition of
f(u, v, d) we see that 2

(2,d) | f(u, v, d). Thus 2
(2,d) | k and hence 2 | kd.

If 2 | u, then clearly 2 | ku
(k,v) . If 2 - u, by Definition 2.1 we have ord2k ≥

ord2f(u, v, d) ≥ 1 + ord2v. Thus 2 | k
(k,v) and again 2 | ku

(k,v) .
Now we show that 4 | ksu

(k,v) . Since 2 | ku
(k,v) by the above, we see that the result is

true when 2 | s. Suppose 2 - s. By Definition 2.1 we have 8
(8,u) · 2ord2v | f(u, v, d). Since

(8, u) | u and f(u, v, d) | k we see that 8 · 2ord2v | ku. Thus ku
(k,v) = ku

(ku,v) ≡ 0 (mod 8).
Hence again 4 | ksu

(k,v) . So (2.10) holds.
Let

S =
ksu

4(k, v)
+

ku

2(k, v)
(
r + 1 +

k2d

2
+ ord2k − ord2v

)
.
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We assert that 2 | S. To prove this, we consider the following four cases.
CASE 1. 2 - s. In this case, by the above argument we know that 8 | ku

(k,v) . Thus
2 | S.

CASE 2. 2 | s and 2 - u. Since 2 - u and 2 | ku
(k,v) we see that 2 | k and hence 4 | k2d.

Thus,

S =
ku

2(k, v)
(s

2
+ r + 1 +

k2d

2
+ ord2k − ord2v

)

≡ k

2(k, v)
(r +

s

2
+ 1 + ord2k − ord2v) (mod 2).

Clearly ord2k ≥ ord2f(u, v, d) ≥ 1+ord2v. If ord2k ≥ 2+ord2v, then 4 | k
(k,v) and thus

2 | S. If ord2k = 1 + ord2v, then ord2f(u, v, d) = 1 + ord2v and hence 2 | (r + s/2).
Thus,

S ≡ k

2(k, v)
(r +

s

2
+ 1 + ord2k − ord2v) ≡ r +

s

2
+ 1 + 1 ≡ 0 (mod 2).

CASE 3. 2 | s and 4 | u. In this case, 2 | ku
2(k,v) . Thus,

S =
ku

2(k, v)
(s

2
+ r + 1 +

k2d

2
+ ord2k − ord2v

) ≡ 0 (mod 2).

CASE 4. 2 | s and 2 ‖ u. Since (u, v) = 1 we see that 2 - v and hence 2 - (k, v). Thus,

S =
ku

2(k, v)
(s

2
+ r + 1 +

k2d

2
+ ord2k − ord2v

)

≡ k(r +
s

2
+ 1 +

k2d

2
+ ord2k) (mod 2).

Clearly 2 | S when 2 | k. Now assume 2 - k. Then we have f(u, v, d) = 1 and so
d + 2r + s ≡ 2 (mod 4). Hence S ≡ r + s

2 + 1 + d
2 ≡ 0 (mod 2).

Summarizing the four cases we get the assertion 2 | S.
If ky = 0, then

(a(ax2 + 2bxy + cy2), 0) = (a(ax2 + 2bxy + cy2), 2ky(u2 − dv2)) = 1

and so a(ax2 + 2bxy + cy2) = ±1. Hence

( (ax + by)v + kuyi

ax2 + 2bxy + cy2

)
4

= 1 =
(bv − kui

a

)
4
.

So the result holds in this case.
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Now assume ky 6= 0. Since 2 - a(ax2 + 2bxy + cy2), 2 | kd and a(ax2 + 2bxy + cy2) =
(ax+by)2+k2dy2 we see that 2 - ax+by. Observing that 2 | ku

(k,v) and ( v
(k,v) ,

k
(k,v)u) = 1

we also find 2 - v
(k,v) and hence 2 - v

(v,ky) .
Let

A = (ax + by)
v

(v, ky)
and B =

kuy

(v, ky)
=

ku

(k, v)
· y

(v/(k, v), y)
.

By the above, it is clear that A ≡ 1 (mod 2) and B ≡ 0 (mod 2). Thus (−1)(A+B−1)/2(A+
Bi) is primary in Z[i]. Notice that (ax2 + 2bxy + cy2, (v, ky)) = ((ax2 + 2bxy +
cy2, ky), v) = 1. So we have

( (ax + by)v + kuyi

ax2 + 2bxy + cy2

)
4

=
( A + Bi

ax2 + 2bxy + cy2

)
4
.

Since

a(ax2 + 2bxy + cy2)
v2

(v, ky)2
=

(
(ax + by)2 + k2dy2

) v2

(v, ky)2

= (ax + by)2
v2

(v, ky)2
+

k2u2y2

(v, ky)2
+ (dv2 − u2)

k2y2

(v, ky)2

= A2 + B2 + (dv2 − u2)
k2y2

(v, ky)2

and

(u, v) = (a(ax2 + 2bxy + cy2), 2ky(u2 − dv2)) = 1

we see that

(a(ax2 + 2bxy + cy2)v2/(v, ky)2, A2 + B2)

= (a(ax2 + 2bxy + cy2)v2/(v, ky)2, (u2 − dv2)k2y2/(v, ky)2) = 1.

Thus,
(A + Bi

a

)
4

( A + Bi

ax2 + 2bxy + cy2

)
4

( A + Bi

v2/(v, ky)2
)

4
6= 0.

As before we have 2 | kd, 2 - ax + by and 2 - v
(v,ky) . So

a(ax2 + 2bxy + cy2)
v2

(v, ky)2
=

(
(ax + by)2 + k2dy2

) v2

(v, ky)2

≡ 1 + k2dy2 ≡ (−1)k2dy2/2 = (−1)k2dy/2 (mod 4).
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Hence , applying all the above and (2.1)-(2.3) we obtain

( (ax + by)v + kuyi

ax2 + 2bxy + cy2

)
4

=
( A + Bi

ax2 + 2bxy + cy2

)
4

=
( A + Bi

a(ax2 + 2bxy + cy2)v2/(v, ky)2
)

4

( A + Bi

av2/(v, ky)2
)−1

4

=
( (−1)k2dy/2a(ax2 + 2bxy + cy2)v2/(v, ky)2

A + Bi

)
4

( A−Bi

av2/(v, ky)2
)

4

=
( −1

A + Bi

) k2dy
2

4

(A2 + B2 + (dv2 − u2)k2y2/(v, ky)2

A + Bi

)
4

(A−Bi
av2

(v,ky)2

)
4

=
( −1

A + Bi

) k2dy
2

4

( (dv2 − u2)k2y2/(v, ky)2

A + Bi

)
4

(A−Bi

a

)
4

(A−Bi
v

(v,ky)

)2

4

=
( −1

A + Bi

) k2dy
2

4

( (dv2 − u2) k2y2

(v,ky)2

A + Bi

)
4

( bvy
(v,ky) − kuy

(v,ky) i

a

)
4

( −Bi
v

(v,ky)

)2

4

= (−1)
k2dy

2 ·B
2

( (dv2 − u2)k2y2/(v, ky)2

A + Bi

)
4

(bv − kui

a

)
4

( −B2

v/(v, ky)

)
4

(note that
( −1
A + Bi

)
4

= (−1)
B
2 and (a, ky) = 1)

= (−1)
k2d
2 ·B

2

( (−1)r+12sWk2y2/(v, ky)2

A + Bi

)
4

(bv − kui

a

)
4

(note that (y − 1)B/2 is always even)

= (−1)(r+1+ k2d
2 ) B

2

(2sk2y2/(v, ky)2

A + Bi

)
4

(A + Bi

W

)
4

(bv − kui

a

)
4
.

Suppose that p is a prime divisor of W . Then p | w. Since w
(u,w) | k we see that

w | ku and hence p | ku. If p | v, we must have p | u since u2 = dv2 + (−1)r2sW . But
(u, v) = 1, so p - v. Hence p | ku

(k,v) and therefore p | B. So we have

(A + Bi

W

)
4

=
∏

p|W

(A + Bi

p

)
4

=
∏

p|W

(A

p

)
4

= 1.

Now let n = ord2
k

(k,v) and t = ord2y. Since 2 - v
(k,v) and ky

(v,ky) = k
(k,v) · y

(v/(k,v),y) , we
9



see that 2n+t‖ ky
(v,ky) . Assume ky

(v,ky) = 2n+tM(2 - M). Then we have

(2sk2y2/(v, ky)2

A + Bi

)
4

=
(2s+2n+2tM2

A + Bi

)
4

=
( 2

A + Bi

)s+2n+2t

4

(A + Bi

M2

)
4

=
( 2

(−1)(A+B−1)/2(A + Bi)

)s+2n+2t

4

(A + Bi

M

)2

4

= i−(−1)(A+B−1)/2 B
2 (s+2n+2t)

( A

M

)2

4

(by (2.7) and the fact that M | B)

= i−(A+B) B
2 (s+2n+2t)

(note that (−1)(A+B−1)/2 ≡ A + B (mod 4)).

Recall that 2 | ku
(k,v) , 2 - v

(k,v) and 2 - ax + by. We find

(A + B)
B

2
=

(ax + by)v + kuy

(v, ky)
· kuy

2(v, ky)
=

kuy((ax + by)v + kuy)
2(k, v)2(v/(k, v), y)2

≡ kuy((ax + by)v + kuy)
2(k, v)2

=
kuvy(ax + by)

2(k, v)2
+ 2

( kuy

2(k, v)
)2

≡ kuy

2(k, v)

(
(ax + by)

v

(k, v)
+ 2

)
(mod 4)

and therefore
(2sk2y2/(v, ky)2

A + Bi

)
4

= i−(s+2n+2t)(A+B)B/2 = i−(s+2n+2t) kuy
2(k,v) ((ax+by) v

(k,v)+2)

= i−s kuy
2(k,v) ((ax+by) v

(k,v)+2)+2(n+t) kuy
2(k,v) = i

kuy
2(k,v) (2n+2s−s(ax+by) v

(k,v) )

(note that 2s ≡ −2s (mod 4) and 4 | 2ty).

As before we have 2 - v
(k,v) . Thus

B

2
=

ku

2(k, v)
· y

(v/(k, v), y)
≡ kuy

2(k, v)
(mod 2)

and so
(−1)(r+1+ k2d

2 ) B
2 = (−1)(r+1+ k2d

2 ) kuy
2(k,v) = i2(r+1+ k2d

2 ) kuy
2(k,v) .

Now putting all the above together we get
( (ax + by)v + kuyi

ax2 + 2bxy + cy2

)
4

= (−1)(r+1+ k2d
2 ) B

2

(2sk2y2/(v, ky)2

A + Bi

)
4

(A + Bi

W

)
4

(bv − kui

a

)
4

= i2(r+1+ k2d
2 ) kuy

2(k,v) · i kuy
2(k,v) (2n+2s−s(ax+by) v

(k,v) ) · 1 ·
(bv − kui

a

)
4

= i
kuy

2(k,v){2(r+s+1+ k2d
2 +n)−s(ax+by) v

(k,v)}
(bv − kui

a

)
4
.

10



From the above we have 2 - ax + by, 4 | ksu
(k,v) and 2 - v

(k,v) . So

i−
kuy

2(k,v) (ax+by)s v
(k,v) = (−1)−

ksu
4(k,v) y(ax+by) v

(k,v) = (−1)
ksuy
4(k,v) .

Note that n = ord2k − ord2(k, v) = ord2k − ord2v since 2 - v
(k,v) . By the above we get

( (ax + by)v + kuyi

ax2 + 2bxy + cy2

)
4

= (−1){
ksu

4(k,v)+
ku

2(k,v) (r+1+ k2d
2 +ord2k−ord2v)}y

(bv − kui

a

)
4

= (−1)Sy
(bv − kui

a

)
4

=
(bv − kui

a

)
4
.

We are done.
Remark 2.1 By the proof of Theorem 2.1, we have the following general result.

Suppose u, v, d ∈ Z, dv(u2 − dv2) 6= 0, (u, v) = 1, and u2 − dv2 = (−1)r2sW with
W ≡ 1 (mod 4). Let w be the product of all the distinct prime divisors of W , and
a, b, c, k, x, y ∈ Z. If

(a(ax2+2bxy+cy2), 2ky(u2−dv2)) = 1, b2−ac = −k2d,
w

(u,w)

∣∣∣ k, 2
∣∣ kd and 2

∣∣∣ ku

(k, v)
,

then ( (ax + by)v + kuyi

ax2 + 2bxy + cy2

)
4

= i
kmuy
2(k,v)

(bv − kui

a

)
4
,

where

m = 2
(
r + s + 1 +

k2d

2
+ ord2k − ord2v

)− s(ax + by)
v

(k, v)
.

Corollary 2.1. Suppose u, v, d ∈ Z, dv(u2−dv2) 6= 0 and (u, v) = 1. If a, b, c, a′, b′, c′,K
∈ Z, k = KF (u, v, d), (a, 2b, c) ∼ (a′, 2b′, c′), b2−ac = −k2d and (aa′, 2K(u2−dv2)) =
1, then (b′v − kui

a′

)
4

=
(bv − kui

a

)
4
.

Proof. Since (a, 2b, c) ∼ (a′, 2b′, c′), there are integers α, β, γ, δ such that αδ−βγ = 1
and

a(αx + βy)2 + 2b(αx + βy)(γx + δy) + c(γx + δy)2 = a′x2 + 2b′xy + c′y2.

That is,

(2.11) a′ = aα2 + 2bαγ + cγ2, b′ = aαβ + b(αδ + βγ) + cγδ, c′ = aβ2 + 2bβδ + cδ2.

Hence

b′γ = aαβγ + bγ(αδ + βγ) + cγ2δ

≡ aαβγ + bβγ2 + bαδγ + δ(−aα2 − 2bαγ)

= aα(βγ − αδ) + bγ(βγ + αδ − 2αδ)

= (aα + bγ)(βγ − αδ) = −(aα + bγ) (mod |aα2 + 2bαγ + cγ2|)
11



and so

(2.12) b′
γ

(a, γ)
≡ − a

(a, γ)
α− b

γ

(a, γ)
(mod

|aα2 + 2bαγ + cγ2|
(a, γ)

).

Let a∗ = a/(a, γ), c∗ = (a, γ)c, x = α and y = γ/(a, γ). By (2.11) and (2.12) we
have

a∗x2 + 2bxy + c∗y2 =
aα2 + 2bαγ + cγ2

(a, γ)
=

a′

(a, γ)

and
b′y ≡ −a∗x− by (mod |a∗x2 + 2bxy + c∗y2|).

Since (aa′, 2K(u2 − dv2)) = 1 we see that (a∗(a∗x2 + 2bxy + c∗y2), 2K(u2 − dv2)) = 1.
Observe that (α, γ) = 1 since αδ−βγ = 1. We find (a∗x, y) = (αa/(a, γ), γ/(a, γ)) = 1.
Hence

(a∗(a∗x2 + 2bxy + c∗y2), 2Ky(u2 − dv2)) = 1.

Clearly we have (2b)2− 4a∗c∗ = (2b)2− 4ac = −4k2d. Thus, applying the above and
Theorem 2.1 we get

(b′v − kui

a′/(a, γ)

)
4

=
( b′v − kui

a∗x2 + 2bxy + c∗y2

)
4

=
( −b′vy + kuyi

a∗x2 + 2bxy + c∗y2

)
4

=
( (a∗x + by)v + kuyi

a∗x2 + 2bxy + c∗y2

)
4

=
(bv − kui

a∗

)
4

=
(bv − kui

a/(a, γ)

)
4
.

Notice that b′ ≡ bαδ = b(1 + βγ) ≡ b (mod (a, γ)). Then we see that

(b′v − kui

a′

)
4

=
(b′v − kui

(a, γ)

)
4

(b′v − kui

a′/(a, γ)

)
4

=
(bv − kui

(a, γ)

)
4

(bv − kui

a/(a, γ)

)
4

=
(bv − kui

a

)
4
.

This is the result.

3. The quartic characters on H(−4k2d).
In this section we use quartic Jacobi symbols to construct the quartic characters on

the form class group H(−4k2d).

Lemma 3.1. Suppose a, b, c ∈ Z, a 6= 0, gcd(a, b, c) = 1 and M ∈ N. Then there is
a primitive quadratic form (a′, b′, c′)(a′, b′, c′ ∈ Z) such that aa′ > 0, (a′,M) = 1 and
(a′, b′, c′) ∼ (a, b, c).

Proof. Gauss showed that there exist integers x, y such that (x, y) = 1 and (ax2 +
bxy+cy2,M) = 1, see for example [Cox, Lemma 2.25]. Replacing x by x+kM |y|, where
k is large enough, we get a(ax2 + bxy + cy2) > 0. So there is an integer a′ such that
aa′ > 0, (a′,M) = 1 and a′ is properly represented by (a, b, c). By a result of Gauss (see
[Cox, Lemma 2.3]), a form properly represents a′ if and only if it is properly equivalent
to a form of the shape (a′, ∗, ∗). So the result follows.

12



Lemma 3.2. Let (a1, b1, c1) and (a2, b2, c2) be two primitive, integral quadratic forms
of the same discriminant d, t = gcd(a1, a2,

b1+b2
2 ), and let u, v, w be integers such that

a1u + a2v + b1+b2
2 w = t. If we set a3 = a1a2/t2, b3 = b2 + 2a2( b1−b2

2 v − c2w)/t and
c3 = (b2

3 − d)/(4a3), then

b3 ≡ b1 (mod 2
a1

t
), b3 ≡ b2 (mod 2

a2

t
) and [a1, b1, c1][a2, b2, c2] = [a3, b3, c3].

Proof. From [C, p.246] we know that [a1, b1, c1][a2, b2, c2] = [a3, b3, c3]. Also, clearly
b3 ≡ b2 (mod 2a2

t ). So it suffices to show that b3 ≡ b1 (mod 2a1
t ). Since c2 = (b2

2 −
d)/(4a2) = (b2

2 − b2
1 + 4a1c1)/(4a2), we see that

b3 = b2 +
2a2

t

(b1 − b2

2
v − b2

2 − b2
1 + 4a1c1

4a2
w

)

= b2 +
a2

t
(b1 − b2)v + (b1 − b2)

(b1 + b2)/2
t

w − 2
a1

t
c1w

≡ b2 + (b1 − b2)
(a2

t
v +

(b1 + b2)/2
t

w
)

= b2 + (b1 − b2)
(
1− a1

t
u
)

≡ b2 + b1 − b2 = b1 (mod 2a1/t).

This proves the lemma.

Lemma 3.3. Let (a1, 2b1, c1) and (a2, 2b2, c2) be two primitive quadratic forms of dis-
criminant 4d(d ∈ Z), and 2 - a1a2. If (a3, 2b3, c3) is the composition of (a1, 2b1, c1) and
(a2, 2b2, c2) as defined in Lemma 3.2, and u, v ∈ Z with (a1, b

2
1u

2+v2) = (a2, b
2
2u

2+v2) =
1, then we have (b1u + vi

a1

)
4

(b2u + vi

a2

)
4

=
(b3u + vi

a3

)
4
.

Proof. Since (a1, b
2
1u

2 +v2) = (a2, b
2
2u

2 +v2) = 1 we see that
(

b1u+vi
a1

)
4

(
b2u+vi

a2

)
4
6= 0.

Let t = gcd(a1, a2, b1 + b2). From Lemma 3.2 we know that

a3 =
a1

t
· a2

t
and 2b3 ≡ 2bs (mod 2

as

t
) (s = 1, 2).

Thus,
(b3u + vi

a3

)
4

=
(b3u + vi

a1/t

)
4

(b3u + vi

a2/t

)
4

=
(b1u + vi

a1/t

)
4

(b2u + vi

a2/t

)
4

=
(b1u + vi

a1

)
4

(b1u + vi

t

)−1

4

(b2u + vi

a2

)
4

(b2u + vi

t

)−1

4

=
(b1u + vi

a1

)
4

(b2u + vi

a2

)
4

(b1u− vi

t

)
4

(b2u− vi

t

)
4
.

But, since b1 + b2 ≡ 0 (mod t) we have
(b1u− vi

t

)
4

(b2u− vi

t

)
4

=
( (b1u− vi)(b2u− vi)

t

)
4

=
(b1b2u

2 − v2 − (b1 + b2)uvi

t

)
4

=
(b1b2u

2 − v2

t

)
4

= 1.
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Hence (b3u + vi

a3

)
4

=
(b1u + vi

a1

)
4

(b2u + vi

a2

)
4
.

This proves the lemma.

Lemma 3.4. Suppose D ∈ Z − {0}. Let G be a subgroup of H(−16D), and let G1 ={
[a, 2b, c]

∣∣ [a, 2b, c] ∈ G, a ≡ 1 (mod 4)
}
. Then

(i) G1 is a subgroup of index 1 or 2 in G.
(ii) If p ≡ 1 (mod 4), then p is represented by one class in G if and only if p is

represented by one class in G1.

Proof. For [a, 2b, c] ∈ H(−16D), it is known that (see [D] and [Cox, p.55]) χ([a, 2b, c])
= (−1)

a−1
2 (2 - a) is a genus character on H(−16D). So χ is also a character on G and

hence G1 is a subgroup of index 1 or 2 in G. This proves (i). Applying [Cox, Lemma
2.3] we get (ii) and hence the proof is complete.

Applying Chebotarev’s density theorem to the field Q(
√

u,
√

v) one can easily derive
the following result.

Lemma 3.5. If u and v are nonsquare integers, then there are infinitely many primes
q for which (u

q ) = ( v
q ) = −1.

We point out that Lemma 3.5 can also be proved by using Chinese remainder theorem
and quadratic reciprocity law.

Now we are able to give

Theorem 3.1. Suppose u, v, d ∈ Z, dv(u2 − dv2) 6= 0, (u, v) = 1, and k = KF (u, v, d)
with K ∈ Z. For [a, 2b, c] ∈ H(−4k2d) with (a, 2K(u2 − dv2)) = 1 define χ([a, 2b, c]) =(

bv−kui
a

)
4
. If 8 | k2d, we also define χ′([a, 2b, c]) =

(
ku+bvi

a

)
4
. Then χ and χ′ (if 8 | k2d)

are quartic characters on H(−4k2d). Hence the kernels

G(u, v, d, K)

= Ker χ =
{

[a, 2b, c]
∣∣ [a, 2b, c] ∈ H(−4k2d), (a, 2K(u2 − dv2)) = 1,

(bv − kui

a

)
4

= 1
}

,

G′(u, v, d,K)

= Ker χ′ =
{

[a, 2b, c]
∣∣ [a, 2b, c] ∈ H(−4k2d), (a, 2K(u2 − dv2)) = 1,

(ku + bvi

a

)
4

= 1
}

are subgroups of H(−4k2d), and H4(−4k2d) is a subgroup of G(u, v, d,K) and G′(u, v, d, K)
(if 8 | k2d) . Moreover, if u2 − dv2 and −d(u2 − dv2) are nonsquare integers, then
|G(u, v, d,K)| = |G′(u, v, d, K)| = 1

4h(−4k2d).

Proof. From Corollary 2.1 and Lemma 3.1 we see that χ is well-defined, and clearly
χ([1, 0, k2d]) = 1. Thus, applying Lemma 3.3 we find that χ is a group homomorphism
from H(−4k2d) to {±1,±i}. Hence χ is a character on H(−4k2d). If 8 | k2d, define
ψ([a, 2b, c]) = ( 2

|a| ). Then clearly

χ′([a, 2b, c]) =
( i

a

)
4

(bv − kui

a

)
4

=
( 2
|a|

)
χ([a, 2b, c])

14



and so χ′ = χψ. Using Corollary 2.1 and Lemma 3.2 one can show that ψ is a character
of H(−4k2d). Actually it is well known that ψ is a genus character of H(−4k2d) (see
[Cox, p.55] and [Bu]). So χ′ is also a character on H(−4k2d). Therefore H4(−4k2d) ⊆
Ker χ and H4(−4k2d) ⊆ Ker χ′ (if 8 | k2d).

From group theory we know that Ker χ and Ker χ′ (if 8 | k2d) are subgroups on
H(−4k2d). Now suppose that u2 − dv2 and −d(u2 − dv2) are nonsquare integers. It
follows from Lemma 3.5 that there are infinitely many primes q such that

(
u2−dv2

q

)
=

(−d(u2−dv2)
q

)
= −1. Hence, there is an odd prime q satisfying q - k and

(
u2−dv2

q

)
=

−(−d
q

)
= −1. For such a prime q, clearly x2 ≡ −d (mod q) for some x ∈ Z since

(−d
q ) = 1. On setting b = kx and c = k2(x2 + d)/q, we find that

(q, b) = (q, 2k(u2 − dv2)) = 1, c ∈ Z and (2b)2 − 4cq = −4k2d.

On the other hand, applying (2.9) we see that

χ2([q, 2b, c]) =
(bv − kui

q

)2

4
=

(b2v2 + k2u2

q

)
=

(−k2dv2 + k2u2

q

)
=

(u2 − dv2

q

)
= −1.

Hence χ([q, 2b, c]) = ±i. Since χ is a group character, we must have

χ([q, 2b, c]2) = −1, χ([q, 2b, c]3) = ∓i and χ([q, 2b, c]4) = 1.

Thus χ and so χ′ (if 8 | k2d) are surjective homomorphisms. Therefore, |Kerχ| =
|Kerχ′| = 1

4h(−4k2d). This completes the proof.

Corollary 3.1. Suppose that d > 1 is a nonsquare integer, and u2 − dv2 = 1 with
u, v ∈ Z and 2 - v. For [a, 2b, c] ∈ H(−16d) with 2 - a define χ([a, 2b, c]) =

(
bv−2ui

a

)
4
.

Then χ is a quartic character on H(−16d).

Proof. Since u2−dv2 = 1 and 2 - v, from Definition 2.1 we see that r = s = 0, w = 1
and F (u, v, d) = f(u, v, d) = 1 or 2. Now putting k = 2 in Theorem 3.1 yields the result.

4. Criteria for
(

u+v
√

d
u−v

√
d

)(p−(−1
p ))/4

(mod p).
For positive odd number p let Dp be the set of those rational numbers whose denom-

inator is prime to p. Following [S1] we define

(4.1) Qr(p) =
{

k
∣∣∣
(k + i

p

)
4

= ir, k ∈ Dp

}
for r = 0, 1, 2, 3.

Theorem 4.1. Let p be an odd prime, u, v, d ∈ Z, (u, v) = 1, v 6= 0, p - d(u2 − dv2),
K ∈ Z, p - K, k = KF (u, v, d) and n = (p− (−1

p ))/4.
(1) Assume that p = ax2 + 2bxy + cy2(a, b, c, x, y ∈ Z), (a, 2Kp(u2 − dv2)) = 1,

b2 − ac = −k2d and j ∈ {0, 1, 2, 3}. Then

(v
√

d + u

v
√

d− u

)n

≡
((−1

p

)ax + by

kdy

√
d
)j

(mod p) ⇐⇒
(bv − kui

a

)
4

= ij ,
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and if 8 | k2d, then also

(u + v
√

d

u− v
√

d

)n

≡
((−1

p

)ax + by

kdy

√
d
)j

(mod p) ⇐⇒
(ku + bvi

a

)
4

= ij .

(2) Let (−d
p ) = 1, and let G(u, v, d,K) and G′(u, v, d, K) be given in Theorem 3.1.

Then
(

v
√

d+u
v
√

d−u

)n ≡ 1 (mod p) if and only if p is represented by one class in G(u, v, d,K).

If 8 | k2d, then
(

u+v
√

d
u−v

√
d

)n ≡ 1 (mod p) if and only if p is represented by one class in
G′(u, v, d,K).

Proof. We show first that p - y and (ax, y) = 1. Indeed, if p | y, then p | x since p - a
and p = ax2 + 2bxy + cy2, so p2 | ax2 + 2bxy + cy2, a contradiction. Hence p - y, and
(ax, y) | p implies (ax, y) = 1. Since ap = (ax + by)2 + k2dy2 and p - k, we obtain

(ax + by

ky

)2

≡ −d (mod p) and
((−1

p

)ax + by

kdy

√
d
)2

≡ −1 (mod p).

If p | u, then clearly p - dv and
(

v
√

d+u
v
√

d−u

)(p−(−1
p ))/4 ≡ 1 (mod p). Since (a, 2b, c)

properly represents p, by [Cox, Lemma 2.3] we have (a, 2b, c) ∼ (p, 2b′, c′) for some
b′, c′ ∈ Z. Applying Corollary 2.1 we get

(bv − kui

a

)
4

=
(b′v − kui

p

)
4

=
(b′v

p

)
4

= 1.

Now assume p - u. By Theorem 2.1,

( v
u · ax+by

ky + i

p

)
4

=
( (ax + by)v + kuyi

p

)
4

=
(bv − kui

a

)
4
.

Hence, if
(

bv−kui
a

)
4

= ij , then v
u · ax+by

ky ∈ Qj(p) and so

(v
√

d + u

v
√

d− u

)n

≡
( v

u · ax+by
ky + ax+by

kdy

√
d

v
u · ax+by

ky − ax+by
kdy

√
d

)n

≡
((−1

p

)ax + by

kdy

√
d
)j

(mod p)

by [S1, Theorem 2.3].
Assume now that 8 | k2d. Then ap ≡ (ax + by)2 ≡ 1 (mod 8), hence a ≡ p (mod 8)

and
i2n = (−1)n =

(2
p

)
=

( 2
|a|

)
= (−1)

a2−1
8 =

( i

a

)
4
.

If
(

ku+bvi
a

)
4

= ij , then

(bv − kui

a

)
4

=
(ku + bvi

a

)
4

( i

a

)−1

4
= ij · i−2n = ij−2n
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and therefore

(u + v
√

d

u− v
√

d

)n

= (−1)n
(v
√

d + u

v
√

d− u

)n

≡ i2n
((−1

p

)ax + by

kdy

√
d
)j−2n

≡
((−1

p

)ax + by

kdy

√
d
)j

(mod p).

If (−d
p ) = 1, then p can be represented by some primitive form of discriminant

−4k2d, and therefore there exist a, b, c ∈ Z such that gcd(a, 2b, c) = 1, b2 − ac = −k2d,
(a, 2Kp(u2−dv2)) = 1 and p = ax2 +2bxy + cy2 for some x, y ∈ Z. By the definition of
G(u, v, d, K), we have [a, 2b, c] ∈ G(u, v, d, K) if and only if

(
bv−kui

a

)
4

= 1. By (1), this

is equivalent to
(

v
√

d+u
v
√

d−u

)n ≡ 1 (mod p). So
(

v
√

d+u
v
√

d−u

)n ≡ 1 (mod p) if and only if p is
represented by one class in G(u, v, d, K). The additional statement in the case 8 | k2d
can be proved in the same way.

Corollary 4.1. Suppose that p ≡ 1 (mod 4) is a prime, u, v ∈ Z, v 6= 0, (u, v) = 1,
p - u2 − v2, and k = KF (u, v, 1) with K ∈ Z and p - K. Then (v + u)/(v − u) is a
quartic residue (mod p) if and only if p can be represented by one class in G(u, v, 1,K).
Moreover, if 4 | k, then (u + v)/(u− v) is a quartic residue (mod p) if and only if p is
represented by one class in G′(u, v, 1,K).

Proof. Taking d = 1 in Theorem 4.1 and then applying Euler’s criterion leads to the
result.
Remark 4.1 For the class [a, 2b, c] in G(u, v, 1,K) or G′(u, v, 1,K) we may further
assume that a > 0 and a ≡ 1 (mod 4) with no loss of generality.

Theorem 4.2. Let p be an odd prime, d ∈ Z, d 6≡ 0, 1 (mod p), (−d
p ) = 1, s(−d, p)2 ≡

−d (mod p), 1 − d = (−1)r2sW (W ≡ 1 (mod 4)), and let d0 be the product of all the
distinct odd prime divisors of 1− d. Then the following statements are equivalent:

(1) s(−d, p) ∈ Q0(p).
(2) There is an integer n such that n2 ≡ 1− d (mod p) and (n

p ) = (n+1
p ).

(3) The congruence x4 + 2(d− 1)x2 + d(d− 1) ≡ 0 (mod p) is solvable.
(4) −d ≡ (2x2 − 1)/(x2 − 1)2 (mod p) for some x ∈ Z.

(5)
(√

d+1√
d−1

)(p−(−1
p ))/4 ≡ 1 (mod p).

(6) p is represented by a primitive form ax2 + 2bxy + cy2 of discriminant −4k2d
with the condition that (a, 2(1 − d)) = 1 and

(
b−ki

a

)
4

= 1, where k = 8d0 or 4d0
(2,r+s/2)

according as 2 - s or 2 | s.
Proof. From [S1, Theorem 2.4] we know that (1) and (2) are equivalent, and from

[S1, Theorem 2.3] we see that (1) is equivalent to (5) (see the proof of Theorem 4.1).
Putting u = v = K = 1 in Theorem 4.1(ii) we find (5) and (6) are equivalent. Since
x4+2(d−1)x2+d(d−1) = (x2−(1−d))2−(1−d), we see that x4+2(d−1)x2+d(d−1) ≡
0 (mod p) is solvable if and only if there exists an integer n such that n2 ≡ 1−d (mod p)
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and x2 − n2 ≡ n (mod p) is solvable. This is equivalent to (2). So (3) is equivalent to
(2). Observe that

(s(−d, p)x)4 + 2(d− 1)(s(−d, p)x)2 + d(d− 1)

≡ d2x4 + 2d(1− d)x2 + d(d− 1) = −d
(− d(x2 − 1)2 − 2x2 + 1

)
(mod p).

We see that (3) is equivalent to (4). Hence the proof is complete.
Remark 4.2 Let p be an odd prime, u, v, d ∈ Z, (u, v) = 1, p - uv(u2 − dv2), (−d

p ) = 1
and s(−d, p)2 ≡ −d (mod p). Using Theorem 4.1 and the argument in the proof of
Theorem 4.2 one can easily prove that the following statements are equivalent:

(1) v
us(−d, p) ∈ Q0(p).

(2)
(

v
√

d+u
v
√

d−u

)(p−(−1
p ))/4 ≡ 1 (mod p).

(3) p is represented by some class in G(u, v, d, 1).
(4) x4 − 2(u2 − dv2)x2 − dv2(u2 − dv2) ≡ 0 (mod p) is solvable.
(5) u2−dv2

u2 ≡ x4

(x2−1)2 (mod p) for some integer x.

5. Criteria for m to be a quartic residue (mod p).
In this section we present two criteria for m to be a quartic residue of p, where p is

a prime of the form 4k + 1 and m is an integer not divisible by p.

Theorem 5.1. Suppose that m ∈ Z, m = 2αm0(2 - m0), and m∗ = 4m′/(4,m0−1−α),
where m′ is the product of all the distinct odd prime divisors of m. If p ≡ 1 (mod 4)
is a prime such that p - m, then m is a quartic residue (mod p) if and only if p can be
represented by one class in the set

G(m) =
{

[a, 2b, c]
∣∣ [a, 2b, c] ∈ H(−16m∗2), a ≡ 1 (mod 4),

(a,m) = 1,
( (m + 1)b− 2m∗(m− 1)i

a

)
4

= 1
}

.

Moreover, G(m) is a subgroup of H(−16m∗2); if m and −m are nonsquare integers,
then |G(m)| = 1

4h(−16m∗2).

Proof. It’s easy to check that G(1) = {[1, 0, 4]} and G(−1) = {[1, 0, 16]}. Since

p ≡ 1 (mod 4) ⇐⇒ p = x2 + 4y2 (x, y ∈ Z)

and
p ≡ 1 (mod 8) ⇐⇒ p = x2 + 16y2 (x, y ∈ Z),

we see that the result holds for m = ±1.
Now assume m 6= ±1. Let us consider the following three cases.
CASE 1. m ≡ 0 (mod 2). Let u = m−1 and v = m+1. From Definition 2.1 one can

easily verify that f(u, v, 1) = 8/(4, m0−1−α) and F (u, v, 1) = 2m∗. Now taking K = 1
in Corollary 4.1 and then applying Theorem 3.1 and Remark 4.1 yields the result.
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CASE 2. m ≡ 1 (mod 4). In this case, m0 = m, α = 0, thus m∗ = 4m′/(4,m0 −
1 − α) = 4m′/(4,m − 1) = m′. On setting u = (m − 1)/2 and v = (m + 1)/2, from
Definition 2.1 we see that

f(u, v, 1) = 2 and F (u, v, 1) =
m′

((m− 1)/2,m′)
f(u, v, 1) = 2m′ = 2m∗.

Thus applying Corollary 4.1, Theorem 3.1 and Remark 4.1 we get the result.
CASE 3. m ≡ 3 (mod 4). In this case, m0 = m, α = 0, thus m∗ = 4m′/(4,m0 − 1−

α) = 4m′/(4,m − 1) = 2m′. Set u = (m + 1)/2 and v = (m − 1)/2. By Definition 2.1
we have f(u, v, 1) = 2 and F (u, v, 1) = 2m′ = m∗. Hence taking K = 2 in Corollary 4.1
and applying Theorem 3.1 and Remark 4.1 we see that m is a quartic residue (mod p)
if and only if p can be represented by some class in the set

G′(m) =
{

[a, 2b, c]
∣∣ gcd(a, 2b, c) = 1, (2b)2 − 4ac = −64m′2, a > 0,

a ≡ 1 (mod 4), (a,m) = 1,
(2m∗ · m+1

2 + m−1
2 bi

a

)
4

= 1
}

.

To see the result G′(m) = G(m), we note that

( (m + 1)b− 2m∗(m− 1)i
a

)
4

(2m∗ · m+1
2 − m−1

2 bi

a

)
4

=
( ((m + 1)b− 2m∗(m− 1)i)(m∗(m + 1)− m−1

2 bi)
a

)
4

=
( ((m + 1)2 − (m− 1)2)m∗b− m2−1

2 (b2 + 4m∗2)i
a

)
4

=
(4mm∗b− m2−1

2 aci

a

)
4

=
(4mm∗b

a

)
4

= 1

and therefore
( (m + 1)b− 2m∗(m− 1)i

a

)
4

=
(2m∗ · m+1

2 − m−1
2 bi

a

)−1

4
=

(2m∗ · m+1
2 + m−1

2 bi

a

)
4
.

Summarizing the above we get the assertion.

Corollary 5.1. Suppose that m ∈ Z, m = 2αm0(2 - m0), and m∗ = 4m′/(4,m0 −
1 − α), where m′ is the product of all the distinct odd prime divisors of m. If p ≡
1 (mod 4) is a prime such that p - m, and if p is represented by one of the fourth powers
(undercomposition) of primitive quadratic forms of discriminant −16m∗2, then m is a
quartic residue (mod p).

Proof. Let [a, 2b, c] ∈ H(−16m∗2) with (a, 2m) = 1. Then clearly (a, 2b) = 1 since
b2 − ac = −4m∗2. Observing that

((m+1)b)2 + (2m∗(m− 1))2 = (m + 1)2(ac− 4m∗2) + 4m∗2(m− 1)2

≡ 4m∗2((m− 1)2 − (m + 1)2) = −16mm∗2 (mod |a|)
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we find (a, ((m + 1)b)2 + (2m∗(m− 1))2) = 1 and hence
( (m+1)b−2m∗(m−1)i

a

)
4
6= 0.

Now suppose [a, 2b, c]s = [as, 2bs, cs] (s = 1, 2, 3, 4). Then we may take a2 = a2 and
hence a4 = a2

2 = a4 by Lemma 3.2. Thus (a4, 2m) = 1 and

( (m + 1)b4 − 2m∗(m− 1)i
a4

)
4

=
( (m + 1)b4 − 2m∗(m− 1)i

a

)4

4
= 1.

Hence [a4, 2b4, c4] = [a, 2b, c]4 ∈ G(m), where G(m) is given in Theorem 5.1.
By Lemma 3.1 and the assumption, there exists a primitive quadratic form (a, 2b, c)

of discriminant −16m∗2 such that (a, 2m) = 1 and that p is represented by the class
[a, 2b, c]4. Applying the above we see that [a, 2b, c]4 ∈ G(m). So m is a quartic
residue (mod p) by Theorem 5.1

Corollary 5.2. Let m ∈ {±2,±3, . . . ,±10}. If p ≡ 1 (mod 4) is a prime such that
p - m, then m is a quartic residue (mod p) if and only if p is represented by one of the
corresponding quadratic forms in Table 1.

Table 1.

m Corresponding quadratic forms
± 2 x2 + 64y2

3 x2 + 144y2, 13x2 + 10xy + 13y2

− 3 x2 + 36y2

4 x2 + 16y2

− 4 x2 + 4y2

5 x2 + 100y2

− 5 x2 + 400y2, 16x2 + 16xy + 29y2

6 x2 + 576y2, 25x2 + 14xy + 25y2, 5x2 ± 4xy + 116y2

− 6 x2 + 576y2, 25x2 + 14xy + 25y2, 20x2 ± 4xy + 29y2

7 x2 + 784y2, 16x2 + 49y2, 29x2 ± 24xy + 32y2

− 7 x2 + 196y2, 4x2 + 49y2

± 8 x2 + 64y2

9 x2 + 36y2, 4x2 + 9y2

− 9 x2 + 144y2, 9x2 + 16y2, 5x2 ± 2xy + 29y2

10 x2 + 1600y2, 41x2 + 18xy + 41y2, 37x2 ± 36xy + 52y2

− 10 x2 + 1600y2, 41x2 + 18xy + 41y2, 13x2 ± 10xy + 125y2

Corollary 5.2 can be easily proved by Theorem 5.1, the theory of reduced forms and
some computations.

Now we give another criterion for m to be a quartic residue (mod p), which extends
Theorem 2.2 of [S1].

For positive odd number n let Qr(n)(r = 0, 1, 2, 3) be defined by (4.1). Then we have

Theorem 5.2. Let p ≡ 1 (mod 4) be a prime, and p = a2 + b2(a, b ∈ Z) with 2 | b and
4 | a + b− 1. If m ∈ Z, p - m, m = (−1)r2sm1, m1 ≡ 1 (mod 4), and k ∈ {0, 1, 2, 3},
then m(p−1)/4 ≡ (b/a)k (mod p) if and only if a/b ∈ Qj(M), where M is the product of
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all odd primes dividing m but not b, and j ∈ {0, 1, 2, 3} is determined by the congruence
j ≡ k − (2r − s)b/2 (mod 4).

Proof. Set π = a + bi. Then clearly p = ππ̄ and b/a ≡ i (mod π) since (a, b) = 1.
Note that π is primary. Applying (2.3), (2.5) and (2.7) we see that

m
p−1
4 ≡ (b/a)k (mod p)

⇐⇒ m
p−1
4 ≡ (b/a)k ≡ ik (mod π) ⇐⇒

( (−1)r2sm1

π

)
4

=
(m

π

)
4

= ik

⇐⇒
(−1

π

)r

4

( 2
π

)s

4

(m1

π

)
4

= ik ⇐⇒ (−1)
rb
2 i−

sb
2

( π

m1

)
4

= ik

⇐⇒
( π

m1

)
4

= ik−(2r−s)b/2 = ij .

Let q be any odd prime divisor of m1. If q | b, then
(

a+bi
q

)
4

=
(

a
q

)
4

= 1 since (a, b) = 1.
Thus,

( π

m1

)
4

=
∏

q|m1

(a + bi

q

)
4

=
∏

q|m1,q-b

(a + bi

q

)
4

=
(a + bi

M

)
4

=
(a/b + i

M

)
4
.

Hence

m
p−1
4 ≡

( b

a

)k

(mod p) ⇐⇒
(a/b + i

M

)
4

= ij ⇐⇒ a

b
∈ Qj(M).

This proves the theorem.

6. Criteria for εd to be a quadratic residue (mod p).
Suppose that d > 1 is a squarefree integer, and εd = (m + n

√
d)/2 denotes the

fundamental unit in the quadratic field Q(
√

d). Then clearly m2 − dn2 = 4 or −4
according as N(εd) = 1 or −1, where N(εd) is the norm of εd.

Lemma 6.1. Suppose d,m, n ∈ Z and m2 − dn2 = −4. Then (m,n) = 1 or 2, and
n/(m,n) is odd.

Proof. Since (m,n) | m and (m,n) | n we find (m,n)2 | m2−dn2. That is, (m,n)2 | 4.
Hence (m,n) = 1 or 2. If (m,n) = 1, then n/(m,n) = n and clearly n is odd since
m2 − dn2 = −4. If (m,n) = 2, then n/(m,n) = n/2. When n

2 is even, we have 2 - m
2

and so (m
2 )2 + 1 ≡ 2 (mod 4). On the other hand, (m

2 )2 + 1 = d(n
2 )2 ≡ 0 (mod 4). This

is a contradiction. So n/2 must be odd and hence the lemma is proved.
If m,n, d ∈ Z and m2 − dn2 = −4, one can easily show that

(6.1)
m

(m,n)
=





m ≡ 1 + (−1)
d
4 (mod 4) if 4 | d,

m ≡ 1 (mod 2) if 2 - dm,
m
2 ≡ 0 (mod 2) if 2 - d and 2 | m,
m
2 ≡ 1 (mod 2) if d ≡ 2 (mod 4).

From (6.1), Definition 2.1 and Lemma 6.1 one can deduce
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Lemma 6.2. Suppose d,m, n ∈ Z, m2 − dn2 = −4, u = m/(m,n) and v = n/(m,n).
Then

F (u, v, d) = f(u, v, d) =





1 if d ≡ 4 (mod 8),
2 if 8 | d or 2 - d,
4 if d ≡ 2 (mod 4).

Now we are in a position to give

Theorem 6.1. Suppose that p is an odd prime, d,m, n ∈ Z, m2−dn2 = −4, (−d
p ) = 1,

and p = ax2 + 2bxy + cy2(a, b, c, x, y ∈ Z) with p - a, 2 - a and b2 − ac = −k2d, where k
is given by

(6.2) k =





1 if d ≡ 4 (mod 8),
2 if 8 | d or 2 - d,
4 if d ≡ 2 (mod 4).

If
(

bn−kmi
a

)
4

= ij, then we have

(m + n
√

d

2

) p−(−1
p

)

2 ≡
((−1

p

)ax + by

kdy

√
d

)j

(mod p).

Proof. Let u = m/(m, n) and v = n/(m,n). Then v 6= 0, (u, v) = 1 and p - u2− dv2.
Since

(v
√

d + u

v
√

d− u

) p−(−1
p

)

4
=

(n
√

d + m

n
√

d−m

) p−(−1
p

)

4
=

(m + n
√

d

2

) p−(−1
p

)

2

and k = F (u, v, d) by Lemma 6.2, putting K = 1 in Theorem 4.1 we obtain the result.
As examples, taking m = 1, 3 in Theorem 6.1 one can easily obtain the following

results:
(6.3) If p is a prime such that p ≡ 3, 7 (mod 20) and p 6= 3, then p = 3x2− 2xy +7y2

(i.e. 3p = (3x− y)2 + 20y2) for some x, y ∈ Z and

(1 +
√

5
2

) p+1
2 ≡ −3x− y

10y

√
5 (mod p).

(6.4) If p is a prime with p ≡ 7, 11, 15, 19, 31, 47 (mod 52) and p 6= 7, then p =
7x2 + 4xy + 8y2 (i.e. 7p = (7x + 2y)2 + 52y2) for some x, y ∈ Z and

(3 +
√

13
2

) p+1
2 ≡ −7x + 2y

26y

√
13 (mod p).

From Theorem 6.1 we have
22



Theorem 6.2. Suppose that p is an odd prime, d,m, n ∈ Z, m2 − dn2 = −4 and
(−d

p ) = 1. Then (m+n
√

d
2 )(p−(−1

p ))/2 ≡ 1 (mod p) if and only if p can be represented by
one class in the set

S(m, n, d) =
{

[a, 2b, c]
∣∣ [a, 2b, c] ∈ H(−4k2d), a ≡ 1 (mod 4),

(bn− kmi

a

)
4

= 1
}

,

where k is given by (6.2). Moreover, if d 6= 1, 4, then S(m,n, d) is a subgroup of index
4 in H(−4k2d).

Proof. Let u = m/(m,n) and v = n/(m,n). Then clearly (u, v) = 1, v 6= 0, u2 −
dv2 = −(2/(m,n))2 6≡ 0 (mod p) and

v
√

d + u

v
√

d− u
=

n
√

d + m

n
√

d−m
=

(m + n
√

d)2

dn2 −m2
=

(m + n
√

d

2

)2

.

From Lemma 6.2 we know that k = F (u, v, d). Thus, from Theorem 4.1 we see that
(m+n

√
d

2 )(p−(−1
p )/2 = ( v

√
d+u

v
√

d−u
)(p−(−1

p ))/4 ≡ 1 (mod p) if and only if p is represented by
one class in the set

G(u, v, d, 1) =
{

[a, 2b, c]
∣∣ [a, 2b, c] ∈ H(−4k2d), 2 - a,

(bv − kui

a

)
4

= 1
}

.

For [a, 2b, c] ∈ G(u, v, d, 1) we may suppose a > 0 by Lemma 3.1 and the theory of
reduced forms. Notice that

(bv − kui

a

)2

4
=

(bn− kmi

a

)2

4
=

(b2n2 + k2m2

a

)
=

( (ac− k2d)n2 + k2m2

a

)
(by (2.9))

=
(k2(m2 − dn2)

a

)
=

(−4k2

a

)
=

(−1
a

)
= (−1)

a−1
2 .

We find that
(

bv−kui
a

)
4

= 1 implies a ≡ 1 (mod 4). Hence S(m,n, d) = G(u, v, d, 1).

Thus we see that (m+n
√

d
2 )(p−(−1

p ))/2 ≡ 1 (mod p) if and only if p is represented by one
class in S(m,n, d).

From Theorem 3.1 we know that S(m, n, d) = G(u, v, d, 1) is a subgroup of H(−4k2d).
If d = x2 for some integer x, then (m + nx)(m − nx) = m2 − dn2 = −4. This yields
m = 0 and so d ∈ {1, 4}. Now assume d 6= 1, 4. Then d is a nonsquare integer. Note
that u2 − dv2 = −(2/(m,n))2 and −d(u2 − dv2) = d(2/(m,n))2. We then see that
u2 − dv2 and −d(u2 − dv2) are nonsquare integers. Hence, by Theorem 3.1 we have
|S(m,n, d)| = |G(u, v, d, 1)| = 1

4h(−4k2d). This completes the proof.
Remark 6.1 Let d > 1 be a squarefree integer, and εd = (m + n

√
d)/2 with negative

norm. Then clearly m2 − dn2 = −4. So, if p ≡ 1 (mod 4) is a prime such that (d
p ) = 1,

it then follows from Theorem 6.2 that εd is a quadratic residue (mod p) if and only if p
can be represented by one of the quadratic forms in the set S(m,n, d). This generalizes
all the special results scattered in the literature.
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For instance, let p ≡ 1 (mod 4) be a prime, d ∈ {2, 5, 10, 13, 17, 26, 29, 37, 41, 53} and
(d

p ) = 1. Using Theorem 6.2 and the theory of reduced forms one can deduce that εd is
a quadratic residue (mod p) if and only if p is represented by one of the corresponding
quadratic forms in Table 2.

Table 2
εd Corresponding quadratic forms

ε2 = 1 +
√

2 x2 + 32y2

ε5 = 1
2 (1 +

√
5) x2 + 20y2

ε10 = 3 +
√

10 x2 + 160y2, 13x2 + 6xy + 13y2

ε13 = 1
2 (3 +

√
13) x2 + 52y2

ε17 = 4 +
√

17 x2 + 68y2, 4x2 + 17y2

ε26 = 5 +
√

26
x2 + 416y2, 21x2 + 10xy + 21y2,

5x2 ± 4xy + 84y2, 17x2 ± 6xy + 25y2

ε29 = 1
2 (5 +

√
29) x2 + 116y2, 5x2 ± 4xy + 24y2

ε37 = 6 +
√

37 x2 + 148y2

ε41 = 32 + 5
√

41 x2 + 164y2, 4x2 + 41y2, 8x2 ± 4xy + 21y2

ε53 = 1
2 (7 +

√
53) x2 + 212y2, 13x2 ± 6xy + 17y2

7. Applications to Lucas series.
For a, b ∈ Z the Lucas sequences {un(a, b)} and {vn(a, b)} are defined by

u0(a, b) = 0, u1(a, b) = 1, un+1(a, b) = bun(a, b)− aun−1(a, b) (n ≥ 1)

and
v0(a, b) = 2, v1(a, b) = b, vn+1(a, b) = bvn(a, b)− avn−1(a, b) (n ≥ 1).

Set d = b2 − 4a. It is well known that

(7.1) un(a, b) =
1√
d

{(b +
√

d

2

)n

−
(b−

√
d

2

)n}
(d 6= 0)

and

(7.2) vn(a, b) =
(b +

√
d

2

)n

+
(b−

√
d

2

)n

.

Let p be an odd prime such that (a
p ) = 1 and p - d. In [Le] D.H. Lehmer showed that

p | u(p−( d
p ))/2(a, b). Thus, if ( 4a−b2

p ) = 1, then p | u(p−(−1
p ))/2(a, b). Since u2n(a, b) =

un(a, b)vn(a, b) we see that p | u(p−(−1
p ))/4(a, b) or p | v(p−(−1

p ))/4(a, b). Now, a natural
problem is to characterize those odd primes p such that p | u(p−(−1

p ))/4(a, b).

Let a, b ∈ Z, ad 6= 0, a = 2ta0(2 - a0), and let a′ be the product of all the distinct
odd prime divisors of a (if a0 = ±1 we set a′ = 1). From Definition 2.1 we see that

(7.3) f(b, 1, d) =





8
(8,b) if 2 - t,

4
(2,(a0+1+t)/2) if 2 | t and 2 - b,
1 if 2 | t and 4 | b,

2
(2,(a0−1+t)/2) if 2 | t and 2 ‖ b

and F (b, 1, d) =
a′

(a′, b)
f(b, 1, d).
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Theorem 7.1. Let p be an odd prime, a, b ∈ Z, d = b2− 4a, p - ad, p = Ax2 + 2Bxy +
Cy2(A,B,C, x, y ∈ Z), (A, 2ap) = 1 and B2−AC = −k2d, where k = F (b, 1, d) is given
by (7.3). Then

(i) u p−(−1
p

)

2

(a, b) ≡
{

0 (mod p) if
(

B−kbi
A

)
4

= ±1,

∓ 2ky
Ax+By

(−1
p

)
(−a)[

p+1
4 ] (mod p) if

(
B−kbi

A

)
4

= ±i,

(ii) u p+(−1
p

)

2

(a, b) ≡
{ ±(−a)[

p
4 ] (mod p) if

(
B−kbi

A

)
4

= ±1,

∓ kby
Ax+By (−a)[

p
4 ] (mod p) if

(
B−kbi

A

)
4

= ±i,

(iii) v p−(−1
p

)

2

(a, b) ≡
{
±2(−a)[

p+1
4 ] (mod p) if

(
B−kbi

A

)
4

= ±1,

0 (mod p) if
(

B−kbi
A

)
4

= ±i,

(iv) v p+(−1
p

)

2

(a, b) ≡
{ ±(−1

p

)
(−a)[

p
4 ]b (mod p) if

(
B−kbi

A

)
4

= ±1,

±(−1
p

)
(−a)[

p
4 ] Ax+By

ky (mod p) if
(

B−kbi
A

)
4

= ±i.

Proof. Let u = b, v = 1 and s = (Ax + By)/(ky). Then clearly s2 ≡ −d (mod p)
since Ap = (Ax+By)2 +k2dy2. From the proof of Theorem 4.1 we see that (Ap, y) = 1.
Thus applying Theorem 2.1 and (7.3) we get

(s + bi

p

)
4

=
(Ax + By + kbyi

p

)
4

=
(B − kbi

A

)
4
.

From this and (2.9) we know that
(B − kbi

A

)2

4
=

(s + bi

p

)2

4
=

(s2 + b2

p

)
=

(b2 − d

p

)
=

(a

p

)
.

Now combining the above with [S2, Theorem 2.1] and [S2, Corollary 2.1] gives the result.
We remark that Theorem 2.1 of [S2] can be deduced from Theorem 4.1. So one may

give a proof of Theorem 7.1 using Theorem 4.1 instead of [S2, Theorem 2.1].
From (7.3) one can verify the following lemma.

Lemma 7.1. Let a, b ∈ Z, a(b2 − 4a) 6= 0, 2t ‖ a, and

δ(a, b) =





8
(8,b) if 2 - t,
4 if 2 | t and 2 - b,

2
(2, a+1

2 · b
2−1)

if 2 - a and 2 | b,
2

(2, b
2 )

if 2 | t, 2 | a and 2 | b.
Then

F (b, 1, b2 − 4a) | δ(a, b)a′/(a′, b) and 8 | δ(a, b)2(b2 − 4a),

where a′ is the product of all the distinct odd prime divisors of a (if a = ±2t we set
a′ = 1).

Now we are able to prove the following general result.
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Theorem 7.2. Let p be an odd prime, a, b ∈ Z, d = b2 − 4a, and p - abd. If δ(a, b)
and a′ are given in Lemma 7.1 and k = δ(a, b)a′/(a′, b), then p | u(p−(−1

p ))/4(a, b) if and
only if p is represented by one class in the set

G(a, b) =
{

[A, 2B, C]
∣∣ [A, 2B, C] ∈ H(−4k2d), (A, 2a) = 1,

(kb + Bi

A

)
4

= 1
}

.

Moreover, G(a, b) is a subgroup of H(−4k2d); if a and a(4a−b2) are nonsquare integers,
then |G(a, b)| = 1

4h(−4k2d).

Proof. Set u = b and v = 1. Since p - abd we know that (see [R]) up−( d
p )(a, b) ≡

0 (mod p), up(a, b) ≡ (d
p ) (mod p) and so up+( d

p )(a, b) 6≡ 0 (mod p). It is well known
that um(a, b) | ukm(a, b) (see [R]). We thus have

p | u(p−(−1
p ))/4(a, b) =⇒ p | up−(−1

p )(a, b) =⇒
(−1

p

)
=

(d

p

)
=⇒

(−d

p

)
= 1.

If p is represented by one class in the set G(a, b), we also have (−d
p ) = 1. So we may

assume (−d
p ) = 1. From (7.1) we see that

p
∣∣ u p−(−1

p
)

4

(a, b) ⇐⇒
(u + v

√
d

u− v
√

d

) p−(−1
p

)

4
=

(b +
√

d

b−
√

d

) p−(−1
p

)

4 ≡ 1 (mod p).

Hence applying Lemma 7.1 and Theorem 4.1 we see that p | u(p−(−1
p ))/4(a, b) if and

only if p is represented by one class in G′(u, v, d, K), where K = k/F (u, v, d). Since
G(a, b) = G′(u, v, d, K), u2 − dv2 = 4a and −d(u2 − dv2) = 4a(4a − b2), applying
Theorem 3.1 we obtain the result.
Remark 7.1 If m ∈ Z − {0}, m | b, m2 | a and p is a prime such that p - m, it
follows from (7.1) that p | un(a, b) if and only if p | un( a

m2 , b
m ). Sometimes, using this

observation we may decrease the discriminant of required quadratic forms.
Putting a = −1 in Theorem 7.2 we obtain the following result, which was announced

in [S2].

Corollary 7.1. Let p be a prime of the form 4m + 1, b ∈ Z − {0}, u0 = 0, u1 = 1
and un+1 = bun + un−1 (n ≥ 1). Then p | u p−1

4
if and only if p is represented by

some primitive, integral form Ax2 +2Bxy +Cy2 of discriminant −4(3− (−1)b)2(b2 +4)
with the condition that 2 - A and

( (3−(−1)b)b+Bi
A

)
4

= 1. Moreover, the classes containing
these primitive quadratic forms form a subgroup of index 4 in H(−4(3−(−1)b)2(b2+4)).

8. Criteria for ε
(p−(−1

p ))/4

d (mod p).
Let d > 1 be a squarefree integer, and let εd = (m+n

√
d)/2 be such that N(εd) = 1.

Then m2 − dn2 = 4. In this section we determine ε
(p−(−1

p ))/4

d (mod p), where p is an
odd prime.

One can easily prove
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Lemma 8.1. Let m,n, d ∈ Z with dn 6= 0 and m2 − dn2 = 4. Then

m + n
√

d

2
=

n
(n,m−2)

√
d + m−2

(n,m−2)

n
(n,m−2)

√
d− m−2

(n,m−2)

=
m+2

(n,m+2) + n
(n,m+2)

√
d

m+2
(n,m+2) − n

(n,m+2)

√
d
.(i)

ord2(m− 2) ≥ ord2n or ord2(m + 2) ≥ ord2n.(ii)

If m,n, d ∈ Z, dn 6= 0 and m2 − dn2 = 4, by Lemma 8.1 and the fact that ord2(m +
2) = ord2(−m− 2) we may choose the sign of m such that ord2(m− 2) ≥ ord2n.

Suppose ord2(m − 2) ≥ ord2n, m − 2 = 2αm0(2 - m0) and n = 2βn0(2 - n0). Using
Definition 2.1 we can deduce that

F
( m− 2

(n,m− 2)
,

n

(n,m− 2)
, d

)
=





8
(4,m0−1−α) if α = β,

4 if α = β + 1 ≡ 1 (mod 2),
2(2,d)

(4,d+m0−1−α) if α = β + 1 ≡ 0 (mod 2),
2

gcd(2,d,α) if α = β + 2,
2

(2,d) if α ≥ β + 3.

From this and the fact that α−β = ord2d+β−ord2(m+2) one can verify the following
result by considering the following six cases: (1) 8 | n, (2) 22 ‖ n (so 4 | m − 2 and
2 | d), (3) 2 ‖ n and 2 - d (so 4 | m and 4 | d− 3), (4) 2 ‖ n and 2 | d (so 4 | m− 2 and
8 | d), (5) 2 - n and 2 - d (so 2 - m and 8 | d− 5), (6) 2 - n and 2 | d (so 2 | m and 4 | d).

Lemma 8.2. Let m, n, d ∈ Z, dn 6= 0, m2 − dn2 = 4, and ord2(m − 2) ≥ ord2n. If
g(m,n, d) is given by Table 3, then

F ((m− 2)/(n,m− 2), n/(n,m− 2), d) = g(m,n, d).

Table 3

d g(m,n, d) Corresponding conditions

d ≡ 0 (mod 4)

4

2
1

22 ‖ d, 2 - n
22 ‖ n, 8 | m + 2

23 ‖ d, 2 ‖ n
Otherwise

d ≡ 1 (mod 4)
4

2

8 | d− 5, 2 - n, 4 | m− 1
8 | d− 5, 2 - n, 4 | m + 1

8 | n

d ≡ 2 (mod 4)
4
2
1

22 ‖ n

23 ‖ n
16 | n

d ≡ 3 (mod 4)
8
2

2 ‖ n
8 | n
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Theorem 8.1. Let p be an odd prime, and let m2−dn2 = 4 with m,n, d ∈ Z and p - dn.
We choose the sign of m so that ord2(m − 2) ≥ ord2n. Let g(m, n, d) ∈ {1, 2, 4, 8} be
given by Table 3, and k = Kg(m,n, d) with K ∈ Z and p - K.

(1) Assume that p = ax2+2bxy+cy2(a, b, c, x, y ∈ Z), b2−ac = −k2d,(a, 2Kp 8−4m
(n,m−2)2 )

= 1 and j ∈ {0, 1, 2, 3}. Then

(m± n
√

d

2

) p−(−1
p

)

4 ≡
(
± (−1

p

)ax + by

kdy

√
d
)j

(mod p) ⇔
( bn

(n,m−2) − k m−2
(n,m−2) i

a

)
4

= ij .

(2) Suppose that (−d
p ) = 1 and δ = ±1. Then

(
δm+n

√
d

2

)(p−(−1
p ))/4 ≡ 1 (mod p) if

and only if p is represented by some class in the set L1(m,n, d, K) or L0(m,n, d, K)
according as ( 2

p ) = δ = −1 or not, where Lj(m,n, d, K)(j = 0, 1) are given by

Lj(m, n, d, K) =
{

[a, 2b, c]
∣∣ gcd(a, 2b, c) = 1, (2b)2 − 4ac = −4k2d,

(
a,

2K(8− 4m)
(n,m− 2)2

)
= 1,

( bn
(n,m−2) − k m−2

(n,m−2) i

a

)
4

= (−1)j
}

.

Moreover, L0(m,n, d,K) is a subgroup of H(−4k2d); if 2−m and 2+m are nonsquare
integers, then |L0(m,n, d,K)| = |L1(m,n, d, K)| = 1

4h(−4k2d).

Proof. Let u = (m−2)/(n,m−2) and v = n/(n,m−2). Then clearly (u, v) = 1, v 6= 0
and u2 − dv2 = (8− 4m)/(n,m− 2)2 6≡ 0 (mod p) since p - dn. From Lemmas 8.1 and
8.2 we see that F (u, v, d) = g(m,n, d) and

(v
√

d + u

v
√

d− u

) p−(−1
p

)

4
=

(m + n
√

d

2

) p−(−1
p

)

4
.

In addition, as m2 − dn2 = 4 we have

(m + n
√

d

2

) p−(−1
p

)

4
(m− n

√
d

2

) p−(−1
p

)

4
= 1.

Thus applying Theorem 4.1 we obtain (1). By (1),

(δm + n
√

d

2

) p−(−1
p

)

4 ≡ 1 (mod p) ⇐⇒
( bn

(n,m−2) − k m−2
(n,m−2) i

a

)
4

=
(2

p

) 1−δ
2

.

Hence (2) follows from (1), Theorem 3.1 and the proof of Theorem 4.1.

Corollary 8.1. Let p ≡ 1 (mod 4) be a prime, m,n, d ∈ Z, m2 − dn2 = 4, p - n
and (d

p ) = 1. We choose the sign of m so that ord2(m − 2) ≥ ord2n. For δ = ±1,
28



(δm + n
√

d)/2 is a quartic residue (mod p) if and only if p is represented by one class
in the set L1(m,n, d, 1) or L0(m, n, d, 1) according as ( 2

p ) = δ = −1 or not.

Proof. Taking K = 1 in Theorem 8.1 and then using Euler’s criterion leads to the
result.

Let m,n, d ∈ Z, m2 − dn2 = 4, dn 6= 0 and ord2(m + 2) ≥ ord2n. From Definition
2.1 and Lemma 8.2 we see that

F
( m + 2

(n,m + 2)
,

n

(n, m + 2)
, d

)
= F

( −m− 2
(n,−m− 2)

,
n

(n,−m− 2)
, d

)
= g(−m,n, d).

Thus one can easily deduce

Lemma 8.3. Let m,n, d ∈ Z, m2 − dn2 = 4, dn 6= 0 and ord2(m + 2) ≥ ord2n. If

g′(m,n, d) =
{

2 if 8 | d, 8 | m− 2 and 8 | n− 4,
δ(n, d) otherwise

and δ(n, d) is given by Table 4, then

F ((m + 2)/(n,m + 2), n/(n,m + 2), d) | g′(m,n, d) and 8 | g′(m,n, d)2d.

Table 4

d δ(n, d) Corresponding conditions

d ≡ 0 (mod 8)
2
1

23 ‖ d, 2 ‖ n
Otherwise

d ≡ 4 (mod 8)
4
2

2 - n
2 | n

d ≡ 1 (mod 4) 4

d ≡ 2 (mod 4)
4
2

22 ‖ n
8 | n

d ≡ 3 (mod 4)
8
4

2 ‖ n
8 | n

Theorem 8.2. Let p be an odd prime, m, n, d ∈ Z, m2 − dn2 = 4, p - dn, and
ord2(m + 2) ≥ ord2n. Let g′(m,n, d) be given in Lemma 8.3.

(1) Assume that

p =ax2 + 2bxy + cy2(a, b, c, x, y ∈ Z), b2 − ac = −g′(m,n, d)2d,
(
a, 2p

8 + 4m

(n,m + 2)2
)

= 1 and j ∈ {0, 1, 2, 3}.
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Then

(m + n
√

d

2

) p−(−1
p

)

4 ≡
((−1

p

) ax + by

g′(m, n, d)dy

√
d
)j

(mod p)

⇐⇒
( m+2

(n,m+2)g
′(m,n, d) + bn

(n,m+2) i

a

)
4

= ij .

(2) Suppose that (−d
p ) = 1. Then

(
m+n

√
d

2

)(p−(−1
p ))/4 ≡ 1 (mod p) if and only if p is

represented by one class in the set

M(m, n, d) =
{

[a, 2b, c]
∣∣ gcd(a, 2b, c) = 1, (2b)2 − 4ac = −4g′(m,n, d)2d,

(
a,

2(8 + 4m)
(n,m + 2)2

)
= 1,

( m+2
(n,m+2)g

′(m,n, d) + bn
(n,m+2) i

a

)
4

= 1
}

.

Moreover, M(m, n, d) is a subgroup of H(−4g′(m,n, d)2d); if 2 − m and 2 + m are
nonsquare integers, then |M(m,n, d)| = 1

4h(−4g′(m,n, d)2d).

Proof. Let u = (m + 2)/(n,m + 2), v = n/(n,m + 2) and k = g′(m,n, d). Then
clearly (u, v) = 1, v 6= 0 and u2 − dv2 = (8 + 4m)/(n, m + 2)2 6≡ 0 (mod p). From
Lemmas 8.1 and 8.3 we know that

u + v
√

d

u− v
√

d
=

m + n
√

d

2
, F (u, v, d) | k and 8 | k2d.

So the result follows from Theorems 4.1 and 3.1.

Lemma 8.4. Suppose a, b, c, d, k, m, n ∈ Z, dn 6= 0, m2−dn2 = 4, (2b)2−4ac = −4k2d
and (a, 2b) = 1. Then

(
a, 2k

8− 4m

(n,m− 2)2
)

=
(
a, 2k

8 + 4m

(n,m + 2)2
)

= 1.(i)

(k m+2
(n,m+2) + bn

(n,m+2) i

a

)
4

=
( bn

(n,m−2) − k m−2
(n,m−2) i

a

)
4
.(ii)

Proof. Let d = 2ord2dd0, m − 2 = 2ord2(m−2)m0, m + 2 = 2ord2(m+2)m1 and n =
2ord2nn0. Since

8± 4m

(n,m± 2)2
=

(m± 2)2

(n,m± 2)2
− d

n2

(n,m± 2)2
∈ Z,

4m− 8
(n,m− 2)2

= 2ord2
4m−8

(n,m−2)2
m0

(m0, n0)2
and

4m + 8
(n,m + 2)2

= 2ord2
4m+8

(n,m+2)2
m1

(m1, n0)2
,

we see that both m0/(m0, n0)2 and m1/(m1, n0)2 are integers. From the fact that
m2 − dn2 = 4 we find m0m1 = d0n

2
0. Thus,

m1
m0

(m0, n0)2
= d0

( n0

(m0, n0)

)2

and m0
m1

(m1, n0)2
= d0

( n0

(m1, n0)

)2

.
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Observing that
( m0

(m0, n0)2
,

n0

(m0, n0)

)
=

( m1

(m1, n0)2
,

n0

(m1, n0)

)
= 1,

we get
m0

(m0, n0)2
∣∣ d0 and

m1

(m1, n0)2
∣∣ d0.

Notice that (a, k2d) = (a, ac − b2) = (a,−b2) = 1 and so (a, d0) = (a, k) = 1. Then we
obtain

(
a,

m0

(m0, n0)2
)

=
(
a,

m1

(m1, n0)2
)

= 1 and so
(
a, 2k

8± 4m

(n,m± 2)2
)

= 1.

This proves (i).
Now consider (ii). Observe that

( bn

(n,m± 2)

)2

+
( k(m± 2)

(n, m± 2)

)2

=
(ac− k2d)n2 + k2(m± 2)2

(n, m± 2)2

≡ −k2(m2 − 4) + k2(m± 2)2

(n,m± 2)2
=

(8± 4m)k2

(n,m± 2)2
(mod |a|).

In view of (i) we find

(
a,

( bn

(n,m± 2)

)2

+
( k(m± 2)

(n,m± 2)

)2)
= 1

and hence ( bn
(n,m−2) − k m−2

(n,m−2) i

a

)

4

(
k m+2

(n,m+2) + bn
(n,m+2) i

a

)

4

6= 0.

To see the result, we note that

( bn
(n,m−2) − k m−2

(n,m−2) i

a

)

4

(k m+2
(n,m+2) + bn

(n,m+2) i

a

)−1

4

=
( bn

(n,m−2) − k m−2
(n,m−2) i

a

)

4

(k m+2
(n,m+2) − bn

(n,m+2) i

a

)

4

=
( (bn−k(m−2)i)(k(m+2)−bni)

(n,m−2)(n,m+2)

a

)

4

=
( 4kbn

(n,m−2)(n,m+2) − k2(m2−4)+b2n2

(n,m−2)(n,m+2) i

a

)

4

=
( 4kbn

(n,m−2)(n,m+2) − n2

(n,m−2)(n,m+2)aci

a

)

4

=
( 4kbn

(n,m−2)(n,m+2)

a

)

4

= 1.

(observe that m2 − 4 = dn2 and b2 − ac = −k2d)

This completes the proof.
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Theorem 8.3. Let p be an odd prime, m,n, d ∈ Z, m2 − dn2 = 4, p - dn, and let
δ(n, d) ∈ {1, 2, 4, 8} be given by Table 4.

(1) Assume that p = ax2 + 2bxy + cy2(a, b, c, x, y ∈ Z), (a, 2bp) = 1, b2 − ac =
−δ(n, d)2d and j ∈ {0, 1, 2, 3}. Then

(m + n
√

d

2

) p−(−1
p

)

4 ≡
((−1

p

) ax + by

δ(n, d)dy

√
d
)j

(mod p)

⇐⇒
( bn

(n,m−2) − δ(n, d) m−2
(n,m−2) i

a

)
4

= ij .

(2) Assume that (−d
p ) = 1. Then (m+n

√
d

2 )(p−(−1
p ))/4 ≡ 1 (mod p) if and only if

p is represented by some class in the set Nj(m,n, d), where j ∈ {0, 1} is given by
p ≡ (−1)j (mod 4) and

Nj(m,n, d) =
{

[a, 2b, c]
∣∣ b2 − ac = −δ(n, d)2d, a ≡ (−1)j (mod 4),

(a, b) = 1,
( bn

(n,m−2) − δ(n, d) m−2
(n,m−2) i

a

)
4

= 1
}

.

Moreover, if 2−m and 2 + m are nonsquare integers, then N0(m,n, d) is a subgroup of
index 4 or 8 in H(−4δ(n, d)2d).

Proof. Set k = δ(n, d). We first prove (1). Let us consider the following three cases:
CASE 1. ord2(m− 2) ≥ ord2n and g(m,n, d) | δ(n, d). In this case, applying Lemma

8.4(i) and Theorem 8.1 we obtain the result.
CASE 2. ord2(m − 2) ≥ ord2n and g(m,n, d) - δ(n, d). Comparing Tables 8.1

and 8.2 we find 8 | d, 22 ‖ n and 8 | m + 2. So ord2(m + 2) ≥ 3 ≥ ord2n and
δ(n, d) = g′(m, n, d) = 1. Now applying Lemma 8.4 and Theorem 8.2 yields the desired
result.

CASE 3. ord2(m− 2) < ord2n. In this case we have ord2(m+2) ≥ ord2n by Lemma
8.1. From Lemma 8.3 we have δ(n, d) = g′(m,n, d). So the result follows from Lemma
8.4 and Theorem 8.2.

Now consider (2). Let N(m, n, d) = N0(m, n, d) ∪N1(m,n, d). If p = ax2 + 2bxy +
cy2(a, b, c, x, y ∈ Z) with a ≡ 1 (mod 2) and b2−ac = −k2d, then ap = (ax+by)2+k2dy2.
Since 8 | k2d by Table 8.2, we see that ax + by ≡ 1 (mod 2) and so ap ≡ (ax + by)2 ≡
1 (mod 8). Hence we have a ≡ p (mod 8). Thus for j ∈ {0, 1}, p ≡ (−1)j (mod 4) is
represented by some class in N(m,n, d) if and only if p is represented by some class in
Nj(m,n, d). By the proof of (1), either ord2(m− 2) ≥ ord2n and g(m,n, d) | δ(n, d), or
ord2(m + 2) ≥ ord2n and δ(n, d) = g′(m,n, d).

If ord2(m − 2) ≥ ord2n and k = Kg(m,n, d) for some integer K, it follows from
Theorem 8.1 that (m+n

√
d

2 )(p−(−1
p ))/4 ≡ 1 (mod p) if and only if p is represented by

one class in the set L0(m, n, d, K), where L0(m,n, d, K) is given in Theorem 8.1. Let
u = (m − 2)/(n,m − 2) and v = n/(n,m − 2). Then (u, v) = 1 and u2 − dv2 =
(8 − 4m)/(n,m − 2)2. From Lemma 8.2 we know that F (u, v, d) = g(m,n, d). Thus
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k = KF (u, v, d). Suppose that (a, 2b, c) is a primitive quadratic form such that (2b)2 −
4ac = −4k2d, (a, 2K(8−4m)/(n, m−2)2) = 1 and

(
bv−kui

a

)
4

= 1. By Lemma 3.1 there
is a primitive quadratic form (a′, 2b′, c′) satisfying (a′, 2d) = 1 and (a, 2b, c) ∼ (a′, 2b′, c′).
Since (a, 2b, c) ∼ (a′, 2b′, c′) we have (2b′)2 − 4a′c′ = (2b)2 − 4ac = −4k2d. Therefore
(a′, 2d) = 1 if and only if (a′, 2b′) = 1. From Lemma 8.4 we see that (a′, 2b′) = 1
implies that (a′, 2k(8 − 4m)/(n,m − 2)2) = 1. Thus using Corollary 2.1 we obtain(

b′v−kui
a′

)
4

=
(

bv−kui
a

)
4

= 1. So we have N(m,n, d) = L0(m,n, d, K). Hence combining
the above, Theorem 8.1 and Lemma 3.4 gives the result.

If ord2(m + 2) ≥ ord2n and δ(n, d) = g′(m,n, d), it follows from Theorem 8.2 that
(m+n

√
d

2 )(p−(−1
p ))/4 ≡ 1 (mod p) if and only if p is represented by one class in the set

M(m,n, d). Set u′ = (m + 2)/(n,m + 2) and v′ = n/(n, m + 2). Then (u′, v′) = 1 and
u′2 − dv′2 = (8 + 4m)/(n,m + 2)2. By Lemma 8.3 we have F (u′, v′, d) | k and 8 | k2d.
Now, using Lemma 8.4, Theorem 3.1 and the above method, one can similarly prove
that

M(m,n, d) =
{

[a, 2b, c]
∣∣ b2 − ac = −k2d, (a, 2b) = 1,

(k m+2
(n,m+2) + bn

(n,m+2) i

a

)
4

= 1
}

.

In view of Lemma 8.4 we see that M(m,n, d) = N(m, n, d). Hence the result follows
from the above, Theorem 8.2 and Lemma 3.4.

By the above we see that (2) is true. Hence the proof is complete.

Now using Corollary 8.1, Theorems 8.2, 8.3 and doing some calculations we have

Theorem 8.4. Let p be a prime of the form 4k+1, d ∈ {3, 6, 7, 11, 14, 15, 19, 21, 22, 23,
30, 31, 33, 34, 35, 38, 39, 42, 43, 46, 47}, and let εd be the fundamental unit of the quadratic
field Q(

√
d). Then εd is a quartic residue (mod p) if and only if p is represented by one

of the corresponding quadratic forms in Table 5.
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Table 5
εd Corresponding quadratic forms

ε3 = 2 +
√

3 x2 + 192y2

ε6 = 5 + 2
√

6 x2 + 96y2

ε7 = 8 + 3
√

7 x2 + 448y2

ε11 = 10 + 3
√

11 x2 + 704y2, 9x2 ± 8xy + 80y2

ε14 = 15 + 4
√

14 x2 + 56y2

ε15 = 4 +
√

15 x2 + 960y2, 20x2 + 20xy + 53y2

ε19 = 170 + 39
√

19 x2 + 1216y2, 17x2 ± 10xy + 73y2

ε21 = 1
2 (5 +

√
21) x2 + 336y2, 21x2 + 16y2

ε22 = 197 + 42
√

22 x2 + 352y2

ε23 = 24 + 5
√

23 x2 + 1472y2, 41x2 ± 4xy + 36y2

ε30 = 11 + 2
√

30 x2 + 480y2, 5x2 + 96y2

ε31 = 1520 + 273
√

31 x2 + 1984y2, 41x2 ± 10xy + 49y2

ε33 = 23 + 4
√

33 x2 + 528y2, 16x2 + 16xy + 37y2

ε34 = 35 + 6
√

34 x2 + 544y2, 17x2 + 32y2

ε35 = 6 +
√

35
x2 + 2240y2, 13x2 ± 6xy + 173y2,

5x2 + 448y2, 36x2 ± 20xy + 65y2

ε38 = 37 + 6
√

38 x2 + 608y2, 9x2 ± 4xy + 68y2

ε39 = 25 + 4
√

39 x2 + 156y2

ε42 = 13 + 2
√

42 x2 + 672y2, 21x2 + 32y2

ε43 = 3482 + 531
√

43 x2 + 2752y2, 41x2 ± 12xy + 68y2

ε46 = 24335 + 3588
√

46 x2 + 736y2, 4x2 + 4xy + 185y2

ε47 = 48 + 7
√

47
x2 + 3008y2, 36x2 ± 28xy + 89y2,

49x2 ± 36xy + 68y2

In the end we pose some conjectures.
Conjecture 8.1 If m,n, d ∈ Z, m2 − dn2 = 4 and if 2−m and 2 + m are nonsquare
integers, then |N0(m,n, d)| = 1

8h(−4δ(n, d)2d).
For discriminant D let H4(D) = {[a, b, c]4 | [a, b, c] ∈ H(D)} and h4(D) = |H4(D)|.

Conjecture 8.2 Let p be a prime of the form 8k + 1. Then h4(−8p) = h4(−128p) =
h(−8p)/4.
Conjecture 8.3 Let p be a prime of the form 24k+1. Then h4(−24p) = h4(−384p) =
h(−24p)/8.
Conjecture 8.4 Let p and q be primes of the form 4k + 1 such that (p

q ) = 1. Then
h4(−4pq) = h4(−64pq) = h(−4pq)/8.
Conjecture 8.5 Let p and q be distinct primes of the form 8k + 1. Then

h4(−8pq) = h4(−128pq) =

{
1
16h(−8pq) if (p

q ) = 1,
1
8h(−8pq) if (p

q ) = −1.

Conjecture 8.6 Let d > 2 be a squarefree integer. If h4(−64d) is odd, then h4(−64d)
= h4(−4d).
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