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Abstract

For a forbidden graph L, let ex(p;L) denote the maximal number
of edges in a simple graph of order p not containing L. Let 7, de-
note the unique tree on n vertices with maximal degree n — 2, and let
T = (V,E) be the tree on n vertices with V = {vg,v,...,v,_1} and E =
{Vovi, .., VOVn—3,Vn—3Vn—2,Vn—2Vs—1}. In the paper we give exact values of
ex(p;T,) and ex(p;T)).
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1. Introduction

In the paper, all graphs are simple graphs. For a graph G = (V(G),E(G)) lete(G) =
|[E(G)| be the number of edges in G and let A(G) be the maximal degree of G. For
a family of forbidden graphs L, let ex(p;L) denote the maximal number of edges
in a graph of order p not containing any graphs in L. The corresponding Turdn’s
problem is to evaluate ex(p;L). For a graph G of order p, if G does not contain any
graphs in L and e(G) = ex(p; L), we say that G is an extremal graph. In the paper
we also use Ex(p; L) to denote the set of extremal graphs of order p not containing
any graphs in L.
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Let N be the set of positive integers. Let p,n € N with p >n > 2. For a given tree
T on n vertices, it is difficult to determine the value of ex(p;T). The famous Erdds-
Sés conjecture asserts that ex(p;T) < @. For the progress on the Erdos-Sos
conjecture, see [2,6,7,8]. Write p =k(n—1)+r, where k € Nand r € {0,1,...,n—

2}. Let P, be the path on n vertices. In [3] Faudree and Schelp showed that

ex(P;Pn):k(n;1> + (;) (1.1)

In the special case r = 0, (1.1) is due to Erdos and Gallai [1]. Let K ,,—1 denote the
unique tree on n vertices with A(K 17,1_1) =n— 1, and let 7;, denote the unique tree
on n vertices with A(T,,) = n— 2. In Section 2 we determine ex(p;Kj ,—1), and in
Section 3 we obtain the exact value of ex(p;T,,).

Forn > 4let T, = (V,E) be the tree on n vertices with V = {vg,vy,...,v,_1} and
E ={vovi,...,V0Vn—3,Vn—3Vn—2,Vn—2Vy—1}. In Section 4 we completely determine
the value of ex(p;T,).

In addition to the above notation, throughout the paper we also use the follow-
ing notation: [x]—the greatest integer not exceeding x, d(v)—the degree of the
vertex v in a graph, I'(v) —the set of vertices adjacent to the vertex v, d(u,v)—the
distance between the two vertices u and v in a graph, K, —the complete graph on
n vertices, K, ,—the complete bipartite graph with m and n vertices in the bipar-
tition, G[Vp]—the subgraph of G induced by vertices in the set Vy, G — Vp—the
subgraph of G obtained by deleting vertices in Vy and all edges incident with
them, G — M —the graph obtained by deleting all edges in M from the graph G,
G + M —the graph obtained by adding all edges in M from the graph G.

2. The Evaluation of ex(p; K, ,—1)

Theorem 2.1. Let p,n € Nwith p>n—1> 1. Then ex(p; Ky p—1) = [(nEZ)p].

Proof. Clearly ex(n — 13K ,—1) = e(Ky—1) = w Thus the result is true

for p=n—1. Now we assume p > n. Suppose that G is a graph of order p
without Ky 1. Then clearly A(G) <n—2and so 2¢(G) =Y,cy () d(v) < pA(G) <

(n—2)p. Hence, ex(p;Kj ,—1) < @. As ex(p; K ,—1) is an integer, we have

(n—Z)p}.

ex(piKin—1) < [ 5

@2.1)

Clearly ex(p;K1,1) = 0. So the result holds for n = 2. As [5]K; does not contain
K12, we have ex(p;Kj ) > [5]. This together with (2.1) gives ex(p;Ki2) = [§].
So the result is true for n = 3.
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Suppose that G is a Hamilton cycle with p vertices. Then G does not contain
K1 3. Thus we have ex(p;Kj 3) > p. Combining this with (2.1) yields ex(p;K; 3) =
p- So the result is true for n = 4.

Now we assume n > 5. By (2.1), it suffices to show that ex(p; K ,—1) > [WTz)p]
Set k = [pTH] V={1,2,...,2k} and M = {12,34,--- ,(2k — 1)(2k) }. Let us con-
sider the following four cases.

Case 1.2 | pand 21{n. Set G = (V,E), where

E={ij|i,jeV, j—ie{l,2k—1,k,k£1,...,k+(n—5)/2}}.

Clearly G is an (n — 2)-regular graph of order p and so G does not contain Kj ,_.
Hence, ex(p;Kip—1) > e(G) = (néz)p = [("}z)p].
Case 2.2 | pand?2|n. Set

Ev={ijli,jeV, j—ie{l,2k—1,k,k£1,....k+(n—4)/2}}.
Then M C E;. Let G = (V,E; —M). We see that G is an (n — 2)-regular graph of

order p and so G does not contain K ,—;. Hence, ex(p;K; ,—1) > e(G) = ("_Tz)p =

[ ("—22)17] .

Case 3. 21 pand 2 | n. Let G be the (n—2)-regular graph of order 2k constructed
in Case 2. Let

vlzk—g—i—?a, vzzk—ﬁ+4,...,vn,3:k—|—g—l and v, 5 = 2k.

2
Then clearly vy, ..., v, are all the vertices adjacent to the vertex 1. If2 | k— ’5’ then
Vi,V3,...,Vy_5 are odd and so VIV2,V3V4,...,Vp_5Vy—4 € M. Thus, Viv2,V3Vv4,...,

Vi-5Vp-4 € E(G). As2k— (k+5—1)=k— %, we see that v,_3v,_» € E] and so
Vn-3Vn—2 & E(G) Let

G =G — {1} +{viv2,v3Va,. .., Va_5Vn4,Vn-3Va-2}.

We see that G’ is an (n — 2)-regular graph of order p. Hence, ex(p;Kj—1) >

-2 -2
e(G) = (n x P _ [(" x )P].
If 21 k— %, then v,vy4,...,v,_4 are odd and so vav3,v4Vs,...,Vy 4V 3 € M.

Thus, v2v3,v4vs,...,Vy—avy—3 ¢ E(G). As p+1=2k>nwehave k—5+3>3
and s0 2,3 ¢ {vi,...,vy_2}. Clearly 2v,_»,3v| ¢ E; and so 2v,_»,3v; ¢ E(G). Let

G =G—{1}—{23} +{vav3,v4vs, ..., Vy_aVn_3,3v1,2vs_2}.

Then G’ is an (n — 2)-regular graph of order p. Hence, ex(p;Ki,—1) > e(G') =

(”*22)17 _ [("*22)17].
Case 4. 2{pand2tn. As2|n+ 1, we can construct an (n — 1)-regular graph

G of order p by using the argument in Case 3. Let

: n+1
{23,45,...,(2k—2)(2k— 1),k(2k)} if2 ] k— 2L,
n+1

{(2(2k),3(k+3 — ——),45,67,...,(2k —2)(2k— 1)} if 2k — 2L,
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It is easily seen that M| C G1. Set G, = G — M. Then fori =2,3,...,2k we have
. [n=3 if2|k—"Handi=k orif21k— "4 andi=k+3— 25,
dGz(l):

n—2 otherwise.
Thus G, does not contain Kj ,,—1 and
2k
2¢(Gy) = Y dg, (i) =n—3+(2k—=2)(n—2)=(n—2)p—1.
=2

Hence ex(p; K| 4—1) > e(G2) = (”_22)1’—1 — [("—22)17]‘
Putting all the above together we prove the theorem. O

Corollary 2.1. Let k,p € N with p > k+2. Then there exists a k—regular graph of
order p if and only if 2 | kp.

Proof. If G is a k—regular graph of order p, then kp = 2¢(G) and so 2 | kp. If 2 | kp,
by the proof of Theorem 2.1 we know that there exists a k—regular graph of order
p. O

Remark 2.1. In [4] Kirkman showed that K>, is 1-factorable. In [5] Petersen proved
that a graph G is 2-factorable if and only if G is 2p-regular. Thus, Corollary 2.1 can
be deduced from [4] and [5].

3. The Evaluation of ex(p; T,)

Theorem 3.1. Let p,n € N with p >n>35. Let r € {0,1,...,n—2} be given by
p=r (modn—1). Then

n=2)(p—1)—r— 1]
2
(n—=2)p—r(n—1-r)
2
Proof. Let G be an extremal graph of order p not containing 7,,. Suppose vp € V(G)
and Gy is the component of G such that vo € V(Gy). If d(vp) =m >n—1,as G
does not contain T, we see that G is a copy of K ,. Suppose m+1=k'(n—1)+r
with ¥ € N and ' € {0,1,...,n—2}. Then K'K,,_; UK, does not contain 7,. As

12> Tand (5) — (F — 1) = C=02 > 0 we find

ifn>T7and2 <r<n-—4,
ex(p;T,) =
otherwise.

/

—1
e(KK,—1UK.) =k (n 5 ) + (;) >Kmn—1)+r —1=m=e(Kinm) = e(Go).

Hence Gy ¢ Ex(m+ 1;T,) and so G ¢ Ex(p;T,). This contradicts the assumption.
Therefore d(vp) <n—2and so A(G) <n—2.1fd(vo) =n—2, as Gy is an extremal
graph not containing 7;, we see that Gy is a copy of K,_.
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Suppose p = k(n— 1) +r. Then k € N. From the above we may assume G =
sK,—1 UG with s € {0,1,...,k} and A(G|) < n—3. If s =k, then clearly G| =
K, and s0 e(G) = k("gl) +(5). If s <k—1, as A(Gy) < n—3 implies G; does
not contain any copies of 7;,, we see that G| € Ex((k—s)(n—1)+r;K; ,—2). By
_ [(n—3)((k—;)(n—1)+r)]. Hence
n—1 (n—=3)((k—s)(n—1)+7r)
e

Theorem 2.1 we have ¢(G)

e(G) =e(sK,—1UG) = s(

Set f(x) :x(”gl) + [("73)((](7)2“)("71)”)]. Then

Fl+1)=(x+ 1)("5 1) + [(”_3)(<k_x)(”_ 1)2”) —(n—=3)(n— 1)]

- (n;1)+[<n—3><<k—;c>(n—1>+r>Jﬂ > £(x).

Thus, f(k—1) > f(k—2) > ... > f(0). Since G is an extremal graph, by the above
we must have s = k— 1 or k and so

ex(p;T,) = e(G)

o) () )

Observe that
(n=3)n—14r) r(r—1) (n—1)(n—-2) r(n—2—r)—(n—1)
2 2 2 B 2 ‘

We then have

ex(p;Ty) :k(ngl) + (;) +max{0, [r(n—Z—rz)—(n—l)} }

If r € {1,n—3,n—2}, then clearly [{"=2=)=(""1] < 0. For n = 6 and r = 2 we

also have [W]:—l<O.Nowassumen27and2§r§n—4.Then
2
n-—8n—+8 n—2\2
2 —(n—1 :——( — )
r(n r)—(n—1) 1 r——
2
n-—8n—+8 n—2\2
> "0 (o ) —n—7>
=74 ( 2 n=720

and so [r(n_z;z)_("_l)] > 0. Hence

ex(p;Ty)
k(n;1>+(">+[r(”—2_r)_(”_1)] ifn>7and2<r<n-—4,

2

—1
k(n ) ) + (;) otherwise.
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To see the result, we note that k("gl) +(3) = ("_2)(p;r)+r2_r = ("_z)p_zr("_l_r)

2
and

k(n;1)+<;)+[r(n—Z—rZ)—(n—l)] _ [(n—z)(p;1)—r—1 |

4. The Evaluation of ex(p;T")

For n > 4 we recall that 7, = (V,E) is the tree on n vertices with V =
{vo,vi,...,va—1} and E = {vov1,...,v0Vp—3,Vp—3Vp—2,Vp—2Vp—1 }. Clearly T, = P4
and 75" = Ps.

Lemma4.1. Let p,n € Nwithp >n>6, andlet G € Ex(p;T,’). Then A(G) <n—2.

Proof. Suppose that vy € V(G),d(vo) =m>n—1andI'(vo) = {v1,...,vm}. Let Go
be the component of G with vy € V(Gy). If there are exactly ¢ vertices uj,...,u; €
V(Gy) such that d(uj,vo) = --- = d(us,v9) =2, then clearly d(u;) = --- = d(uy) =
1, V(Go) = {vo,vi,..-,Vm,u1,...,u;} and |V(Go)| = 1+m+t. If uyv; ¢ E(Go)
for some j € {1,2,...,m} and every i = 1,2,....¢, then clearly d(v;) < 2. Thus,
e(Go) <m+t+%. Set1+m+t=k(n—1)+r(0 <r<n—1). We see that

(1) ()5

(n=2)14+m+t—r)+r(r—1)—3m—2t

2
_ (m+t)(n=5)—r(n—1—r)+(n—2)+t¢
2
> (n—1)(n—5)—|—(n2—2)—r(n—1—r)
(n=D)(n—5)+n—2-"1" 34, _32_1¢
> 5 4 = 3 > 0.

Since kK, _1 UK, does not contain any copies of 7., applying the above we deduce

3m+2t —1
e(Go) < m;— < k(n 2 ) i (;> = e(kKy—1 UK;) < ex(1+m+1,T)).

As G is an extremal graph not containing 7,*, we must have e(Gy) = ex(1 +m+
t;T7). This contradicts the above inequality e(Gp) < ex(1 +m+1¢;T,). Hence
the assumption d(vp) > n— 1 is not true. Thus A(G) < n— 2. The proof is now
complete. [

Lemma 4.2. Let pn € N with p >n > 5, and let G € Ex(p;T,"). Suppose that
vo € V(G),d(vo) =n—2 and Gy is the component of G such that vy € V(Gy). Then
Go =K.
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Proof. Suppose I'(vg) = {v1,...,v,—2} and there are exactly ¢ vertices uy,...,u €
V(Gy) such that d(uy,vg) = -+ =d(u;,vo) = 2. We first assume 7 > 1. Then clearly
d(ul) == d(u;) =1 and V(Go) = {V(),vl, ... ,vnfz,ul,...,u,}. If uyv; € E(G)

for some i € {1,2,...,n—2}, then clearly vv; ¢ E(G) forall j € {1,2,...,n—2}\

{i}. Thus,
21 )
e(Go)gn—2+z+<” ; )g(”z )—i—t—l—l.

Assume t =g(n—1)+to withg € Zand 1o € {0,1,...,n—2}. Then

MLWWhNKQ—c;?—#J

n—1 to n—2
= (1 - —qn—1)—ty—1
a5 ) () (7 s
—1)(n—4 to—1)(to—2
(n=Dn=4)  (o=Dlo=2) _
2 2
As (1+¢)K,—1 UKy, does not contain 7", applying the above we get

=n—4+g¢q

e(Go) < (n )

Since Gy is an extremal graph of order n — 1 +¢ not containing 7,, we must have
e(Go) = ex(n—1+1;T;). This contradicts the above assertion. So ¢ > 1 is not true
and hence V(Go) = {vo,v1,...,vu—2}. As Gy is an extremal graph not containing
T, we see that Gy = K,,_1. This proves the lemma. [

) +t+1<e((14+9)Ky—1UKy;y) <ex(n—1+16;T)).

Lemma 4.3. Let n,t € Nwithn >4, and let G € Ex(n—2+1;T,). Suppose that G
is connected and A(G) =n—3. Thent <n—4 and e(G) < (n—3).

Proof. Suppose vo € V(G),d(vo) = n—3,I'(vg) = {vi,...,v,—3} and V(G) =
{vo,vi,..., vu—3,u1,...,u; }. Then d(u;,vo) =2 and uy, ..., u, must be independent.
As G is connected and u; is adjacent to some vertex in I'(vg), we have
n—3 n—3
e(G)< Y dv) <Y (n—3)=(n—3)°.
i=1 i=1

On the other hand,
(n—1)(n—=2)4+(n—4)(n-15)
2

e(Kn—1UKy—4) = =n*—6n+11> (n—3)°

Thus, for t > n — 3 we have
e(G)=ex(n—24+4t;T) > e(Ky,—1 UK,—4U(t — (n—3))K)
= e(K,_1 UK, _4) > (n—3)%

This contradicts the fact e(G) < (n—3)2. So ¢t < n— 4. The proof is now complete.
O
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Lemma 4.4. Let p,n € Nwith p >n >4, and G € Ex(p;T,). Suppose A(G) <
n—3. Then p <2n—6.

Proof. Assume p =2n—4+t¢.If t > 2n, we may write t —2 = k(n— 1) 4 r, where
keNandre{0,1,...,n—2}. Let Gy € Ex(n—1+r;K) ,—3). From Theorem 2.1
we have ¢(Gy) = [w] Clearly k(n—1)=t—-2—r>2n—-2—r>r+1.
Thus,

e((k+1)Kn_1 UGp) = (k+1)<”; 1) n [("— ! +2r)(n—4)

k+1)(n—=1)(n=2)+(n—1+r)(n—4) -1

>
N 2
((k+2)(n=1)+r)(n=3) k(n—1)—r—1
— : + )
(4= )+ =3 a=p

2 7

On the other hand, as (k+ 1)K, UGy does not contain 7", we have

(n=3)p
s

e((k+1)K,—1UGy) <ex(p;T,)) =e(G) <

This is a contradiction. Hence ¢ < 2n.
Ift=2n—1,thenp=2n—4+t=3(n—1)+n—2and so

(n—3)p
2

@—%p.

< e(3K,—1UK,—2) <ex(p;T,) =e(G) < 7

This is also a contradiction.
Ifn—1<t<2n—1,setting Go € Ex(t —2;K; ,—3) and using Theorem 2.1 we

see that
(n—4)(—-2)
5 :
It is clear that 2K,,_; U Gy does not contain 7, as a subgraph and
n—1 (n—4)(t—2)
)=

>(n—1)(n—2)+ (”_4)(;—2)—1

2n—4+1t)(n—3) 2n—1—t_ (2n—4+1)(n—3)
2 + 2 ~ 2 ’

e(Go) = ex(t —2;Ky y—3) = {

e(ZKn,I UG()) = 2(

On the other hand,

(2n—4+t)(n—3).

e(2K,—1UGy) <ex(2n—4+1,T,) = ¢(G) < >
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This is a contradiction.
By the above, we may assume t <n—2. If t =n— 2, then

ex(3n—6,T)) > e(2K,—1 UK—4) = 2(n—1)(n—2)+(n—4)(n—-75)

2
> (3n 63(,1_ 3) >e(G)=ex(3n—6;T)).

This is a contradiction. If t = n — 3, then

(n—1)(n—2)
2

>e(G) =ex(3n—T,T)).

ex(3n—"T,T,) > e(Ky—1 UKy_3 4-3) = +(n— 3)2

S (3n— 7;(11 -3)

This is also a contradiction. Thus t #n—2,n— 3.

Now we assume that 1 < < n—4. Suppose H € Ex(n — 3;K; ,—3—;) and
V(H) = {v1,...,va—3}. We construct a graph Gy = (V(Gy),E(Gy)) of order n —
3 +1 by defining V(Go) = {u1,...,u; }UV(H) and E(Go) = {ujvj: 1 <i<t,1 <
Jj<n—3}UE(H). Itis easily seen that dg,(vi) <n—4(1 <i<n-—3) and so Gy
does not contain any copies of 7,". Hence,

e(Kn_1UGo) = (” , ) +e(Go)

<ex(2n—4+1;T,)) =e(G) < (2n—4+t)(n—3).

2
Using Theorem 2.1 we see that
e(Go) = (n—3)r+ [<n—3><r21—4_t>}
> (n—3)+ (”_3)(”;4—0—1
_ (2n—4+2t)(n—3) - (n; 1) +%
- Gt (),

this contradicts the above assertion.
By the above we haver <0 and so p <2n—4.1If p=2n—4, since K,,_1 UK},_3
does not contain 7, we have
(n—1)(n—2)+(n—3)(n—4)
2

>e(G)=ex(2n—4;T)).

ex(2n—4T;)) > e(Ky—1 UK, —3) =

- (2n— 4;(11 -3)
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This is a contradiction.
Now we assume p = 2n — 5. It is clear that

(n—1)(n—2)+(n—4)(n—75)

5 =n?—6n+11.

e(Kn—l U Kn—4) =

As K,,_1 UK,_4 does not contain T, we see that n> —6n+ 11 < ex(2n —5;T;) =
e(G). If A(G) < n—4, then clearly ¢(G) < Z=200=) < ;26,4 11. This is a
contradiction. Hence, A(G) = n— 3. Suppose that G is the component of G such
that A(G1) =n—3.If|V(G,)|=n—2+s forsome s € {0, 1,...,n— 3} by Lemma
4.3 we have s < n—4. As G is an extremal graph we have G\G1 K, _3_¢ and so

e(G) = e(G1) +e(G\Gy) < (n—2+s)(n-3) N (n—S_S)

2 2
1 n—4\2 Tn* —40n+ 56
=375+
2 2 8
1 /n—4\2 7Tn*—4
§§<n2 ) " §n+56: Z_6n+9<n®—6n+11,

this contradicts the above assertion e(G) > n> — 6n -+ 11. Therefore p # 2n— 5 and
so p < 2n — 6, which completes the proof. O

Theorem 4.1. Let p.n € Nwithp>n—12>5,andlet p=k(n—1)+rwithk € N
andr € {0,1,...,n—2}. Then

ex(p:T,)

k—1)(n—1)(n—2

( )(n2 )(n )+ex(n—1+r;Tn*) if1<r<n-35;
Y n=2)p—r(n—1-

(n=2)p ;(n r) ifre{O,n—4,n—3,n—-2}.

Proof. Suppose m € N and m > 2n —5. We assert that
—1)(n—-2
ex(m;T,)) = % +ex(m—(n—1);T,)). 4.1)

Assume G € Ex(m;T,"). From Lemma 4.1 we know that A(G) <n—2. As m >
2n—5, by Lemma 4.4 we have A(G) = n — 2. Using Lemma 4.2 we see that G has
a component isomorphic to K, and so (4.1) is true. From (4.1) we deduce that for
k>2,

(p;Tn*) —ex(n—14nrT))

:Z{ex s+ )¢ ”‘1)+’;Tn*>—€x(8(n—1)+r;Tn*)}=(k—1)<n;1>.
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This is also true for k = 1.

For r =0, we have ex(n— 1+ nr;T) = e(K,—1) = (”;1) and so

omp=wn("y ) o () (12 =

Forre{n—4,n—3,n—2} wehaven—1+r >2n—>5 and so by (4.1)

ex(p;TF) = (k—1) (”g 1) tex(n—1+nT)

—w-n(" )+ (1) et k(") ek
_n=2)(p=r) (r> _(n=2)p—r(n—1-7)

2 2 2

as asserted. The proof is now complete. 0
Theorem 4.2. Let p.n € Nwithp>n>6and p=k(n—1)+ 1 with k € N. Then

ex(p;Tn*) _ (n_z)z(p_ 1) )

Proof. Let Gy € Ex(n;T;). If A(Go) < n—3, then e(Gp) < 12 < (1))

On the other hand, ¢(Gp) = ex(m;T;) > e(K,—1 UK;) = w This is a
contradiction. Thus A(Gy) > n—2. Applying Lemmas 4.1 and 4.2 we see that

Go = K,—1 UK and so ex(n; T,") = e(Gop) = W Now applying Theorem 4.1
we obtain
k—1)(n—1)(n—2 —1 -2)(p—1
i) - EEDO=DE=D) 1) 0=2p=1)
2 2 2
This is the result. O

Theorem4.3. Let pn €N, p>n>Tand p=k(n—1)+n—5withk € N. Then

(n—=2)(p—2)

1.
> +

ex(p;T,)) =

Proof. Let Gy € Ex(2n —6;T,). If A(Gp) < n— 3, then ¢(Gp) < w =
(n—3)%. As K,_3,-3 does not contain any copies of T,", we see that ¢(Gp) >
e(Ky—3n-3) = (n—3)%. Hence e(Go) = (n—3)%. If A(Gy) > n—2, by Lem-
mas 4.1 and 4.2 we have Gy = K,,_1 UK,,_5 Thus, ¢(Gp) = e(K,—1 UK,,_5) =

(") + ("}°) =n? —Tn+16. Since (n—3)2 =n? —6n+9 > n? —Tn+ 16, we
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see that ex(2n — 6;T,*) = (n— 3)2. Now applying the above and Theorem 4.1 we
deduce

eﬂpﬂf)z(h—w<n21>%1m@n—6ﬂf):(k—0(n;1)+{n—3f

(n—1)(n—2) n*—9n+16 (n—2)(p—2)
k + =
2 2
This is the result. L]

+ 1.

Lemma 4.5. Let n,r € Nwithn > 7 and r < n—>5. Then there is an extremal graph
G € Ex(n—1+r;{Ki4—2,T, }) such that A(G) = n—3 and G is connected.

Proof. Let G € Ex(n—1+4r;{Ki ,—2,T,}). Then A(G) <n—3. Forr=n—>5 we
see that K, 3,3 € Ex(n— 1+ r;{Kj »—2,T, }). So the result is true.

Now we assume r < n — 6. Suppose H € Ex(n—3;K; ,—5—,) and V(H) =
{vi,...,va—3}. From Theorem 2.1 we know that e(H) = ex(n — 3;K) ,_5_,) =
[%;_6”)] Now we construct a graph Gy = (V(Gy),E(Gyp)) of order n — 1+ r
by defining V(Go) = {uo,...,ur+1} UV(H) and E(Go) ={uv;: 0<i<r+1,1<
J<n—3}UE(H). Itis easily seen that dg,(vi) <n—4(1 <i<n-3), A(Gy) =
n—3 and so Go does not contain any copies of 7," and K ,—». Thus, for any
G e Ex(n—1+4r{Ki,2,T;}),

2

e(G)ze(Go):(n_3)(r+2>+[(n—3)(n—6—r)1 c

Pn—3ﬂn—2+rq.

If A(G) <n—4, we must have G € Ex(n — 1+ r;K; ,—3) and so e(G) =
[("_4)(;_1+r)] by Theorem 2.1. As G is an extremal graph and
(n—=3)(n—2+r) S (n=3)n—2+4+r)—1 (mn—4)(n—1+r)+r+1
2 - 2 B 2
N (n—4)(1;—1+r) > [(11—4)(1;—14—;’)]7

by the above we must have A(G) = n — 3.

Now assume A(G) = n— 3. If G is connected, the result is true. Suppose that G
is not connected. Let G| be a component of G with A(G1) =n—3 and [V(G,)| =
n—1+r—s.Thenl1 <s<r+1<n—35. As G is an extremal graph, we must have
G = G1 UK. Thus,

e(G):e(G1)+<s) < [(n—3)(n—1+r—s)] +s(s—1).

2 2 2

On the other hand, ¢(G) > ¢(Gp) = [("_3)(+_2+r)] Therefore,

[(n—3)(r;—2—|—r)} B [(n—3)(n;1+r—s)] Cs(s—1)

<0.
> <0
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Fors>2wehave (s—1)(n—3—s)=(s—2)(n—4—5)+n—5>n—>5and so

[(n—3)(1;—2+r)] B [(n—3)(n;l+r—s)} _s(sz—l)

> [_SZ_(n—i)s+n—3] _ [(s—l)(lé—3—s)} > [n—S} 5 0.

This contradicts the previous inequality. Thus s = 1 and hence ¢(G) = ¢(Gy) <
[("_L;‘_z“)] = ¢(Gy). By the previous argument, e(G) > e(Gy). Therefore e(G) =

e(Go). As G is connected and A(Gyp) = n — 3, we see that the result is true. O

Lemma 4.6. Let n,r e Nwithn > 11 and 3 <r <n—>5. Then there is an extremal
graph G € Ex(n—1+r;T,) such that A(G) = n—3 and G is connected. Moreover,
ex(n—14+nrT,))=ex(n—1+r{Ki n—2,T; }).

Proof. Let G € Ex(n—1+nr;T,). Forr=n—51let Go =K, 3,-3. Forr <n—6
let Gy be the graph constructed in the proof of Lemma 4.5. Then A(Gy) =n—3
and Gy does not contain any copies of 7,". Thus, e(G) > e¢(Gp). For r =n—>5
we have e(Gy) = (n—3)?. For r < n—6 we have ¢(Gg) = [W] Since
(n—3)% > mﬁws) we always have e(G) > [%] forr <mn-—S5.

If A(G) > n—2, by Lemmas 4.1 and 4.2 we have G = K,,_; UK,. Thus, ¢(G) =
("51) +(5). Since 3 <r<n-—>5andn> 11 we see that (r—2)(n—4 —r) >4 and

S0 (n_3)(;;—2+r)} B (n;l) B <;) _ [(r—Z)(n—24—r)—4 S0,

Therefore ¢(G) < e(Go) and so e(G) = e(Gyp). Since A(Gp) =n—3 and Gy is
connected, the result holds in this case.

Now we assume A(G) <n—3. Then G € Ex(n—1+r;{Kj ,—2,T, }). Applying
Lemma 4.5 we see that the result is true. Thus the lemma is proved. [

Lemma 4.7. Let n,r € Nwithn>7and r <n—>5. Then
ex(n—1+ri{Kiu 2, T} }) = (1= 3)(r+2) +ex(n—3:{Ki s, Ty 5, }).
Moreover, for r > % we have

ex(n—14r;{Ki,—2,T,})

:(n_3)(r+2)+max{(n—5—i’)2, [(I’l—6—2l")(l’l—3)]}

Proof. 1t is clear that ex(2n — 6;{Kj ,—2,T,'}) = e(Ky—3—3) = (n — 3)2. So the
result is true for r = n —5.
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Now assume r < n—6. By Lemma 4.5, we can choose a graph
G € Ex(n — 1+ ri{Kis—2,T,}) so that A(G) = n—3 and G is con-
nected. Suppose ug € V(G),d(up) = n—3,T'(up) = {v1,...,vn—3} and V(G) =
{viy. o yvno3,up,uy,...,ur+1}. Then d(ujup) =2 for i = 1,2,....,r+1 and
{uo,u1,...,u-11}1is anindependent set. If u;v; ¢ E(G) for some i € {1,2,...,r+1}
and j € {1,2,...,n—3}, as G is an extremal graph we see that v;v; € E(G) for
some k € {1,2,...,n—3} —{j}. Set G| = G —v;vy+u;v;. Then clearly G| does
not contain 7,*, e(G) = e(G1), A(G1) = n— 3 and G is connected. Repeating the
above step we see that there is an extremal graph G’ € Ex(n— 1 +r;{Kj ,—2, T,/ })
such that V(G') = {vi,...,vu—3,u0,u1,...,ur+1}, D(u;) = {v1,...,vy_3} for i =
0,1,...,r+1,A(G") =n—3 and G’ is connected. It is easily seen that

e(G)=(n—-3)(r+2)+e(Gvi,...,vp3]).

SetH =G'[vy,...,vy—3]. Since A(G') =n—3 and G’ € Ex(n—1+r;{Ki »—2,T;}),
we see that A(H) <n—5—rand H € Ex(n—3;{Ki p—4—r, T 5 _,}).

Now we assume r > =7 If A(H) =n—5—r, we may assume d(v;) =n—5—r
and Ty (vy) = {va,...,vu—a—,}. Since G’ does not contain 7" and dg/(v;) =n— 3,
we see that {v,_3_,,...,v,_3} is an independent set. As r < n— 6, by the above
we have e(H) < Y5 "dy(vi) < (n—5—r)%. Since r > 21 we have n—3 >
2(n—5—r). Set H =K,_5_1,_5_,U(3r+9—n)K;. Then |V(H')|=n—1+r
and e(H') = (n—5—r)%, A(H') =n—5—rand H' does not contain T} , . As G’
is an extremal graph, by the above we must have e(H) = e(H') = (n —5 —r)?. If
A(H) <n—5—r,thenclearly H € Ex(n—3;Kj ,—5_,). Using Theorem 2.1 we see
that e(H) = ex(n —3;Kj p—5-») = [W] Therefore, e(H) = max{(n—5—
r)?, [—(”_3)(;_6_r)]} and so

ex(n—1+r{Ki 2,1, })

= o(G) = e(G) = (n—3)(r+2) +-max {(n—5 )", [(”_3)(’;_6_”] L

This completes the proof. 0

Theorem 4.4. Let ppneN, p>n>11,re{2,3,....n—6}and p=r (modn—1).
Letme {0,1,...,r+1} be given by n—3 = m (mod r+2). Then

ex(pi 1))
[<”—2)(P—1;‘2r‘m_3] ifr>dand2<m<r—1,
) (=2)(p—1)—m(r+2—m)—r—1

otherwise.

2

Proof. Suppose s = [’::3] Thenn—3 =s(r+2)+m. As r+2 < n—3 we see that
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s € N. We claim that

ex(n—14+r;{Ki,—2,T,})
_ (n—3—m)(i;—1+r—|—m) —|—max{m2, [<r+2+n;)(m_ 1)} } 4.2)

When s =1 wehaven—5—r=m <r+2 and so % < r <n—>5. Thus applying
Lemma 4.7 we have

ex(n—1+7{Ki n—2,T,;})
_ (n_3)(r+2)+max{(n—5—r)2, [(n—6—r)(n—3)]}

2
_ (n=3—m)(n—14+r+m) —|—max{m2, [(r+2+m)(m— 1)} }
2 2
So (4.2) holds.
From now on we assume s > 2. Fori =0,1,...,s —2we haven—i(r+2)—5>

n—3—(s=2)(r+2)—2>2(r+2)—2>r>2. Thus, by Lemma 4.7 we have

ex(n—=3+r+2—i(r+2);{K ni(+2)-2, T, i(r12)})
=(r+2)(n—3—i(r+2))
+ex(n—3—i(r+2);{Ki n(i+1)(r+2)-2 T, (i01)r42) D)

Hence

ex(n —1+n {K1Jl—27 Tn*}) - ex(2(r+2) +m; {Kl,m+r+37 Tm*+r+5})
=ex(n—3+r+2;{Ki,-2,T,})
—ex(n—=3—(s=2)(r+2){Kin—(s-1)(+2-2 T, (- 1) (r+2) })

s—2
= Y (extn=3+r+2=ir+2):{Kiu (122 T iran) )
i=0

—ex(n—3—i(r+2);{Kin(i+1)(r+2)-2: Tn*f(i+l)(r+2)}))
s—2

= Z(r+2)(n—3—i(r+2)).

i=0

Setn' =m+r+5. Asr>m—2and r > 2, we have "/2’7 <r<n'—5andn >
r+5 > 7. Thus, by Lemma 4.7 we have

ex(2(r+2) +mA{Kimire3, Ty rysh)
=ex(n' —1+r{Ky_2T;})

:(n,_3)(r+2)+max{<n,_5_r)z’ (n'_6—2r)(n/_3)”
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= (r+2)(n

Therefore,

(m—l)(m—i—r—i—Z)} }

—3—(s—1)(r+2))—|—max{m2,[ 5

ex(n—14+r{Ki 2,7, })

s—1

i=0
As

s—1

= Z(r+2)(n—3—i(r—|—2))—|—max{m2, [(m— il

I;’L+r+2)]}'

Z(r+2)(n—3—i(r+2))

i=0

= (r+2)((n=3)s— (r+2)

(s — 1)s> _ s(r+2)

> > (2(n—3)—(s—1)(r+2))

(n=3—m)(n—1+r+m)

2 Y

from the above we see that (4.2) is also true for s > 2.

Observe that (

m+r+2)(m—1)
2

:m2+% Formzo’l,}’;r‘—f—l,wehaVe

(r—m)(m—1)—2<0.Now assume 2 <m < r—1. If r =3, then m = 2 and so
(r—m)(m—1)—2=—1<0. If r > 4, then clearly (r —m)(m—1) —2 > 0. Thus,
by (4.2) and the above we obtain

EX(I’I —1+r {Kl,n—za Tn*})

\

(n—=3—m)(n—1+r+m) n (r+2+m)(m—1)]

2 [ 2

ifr>4and2<m<r—1, 4.3)
-3 —1
(n=3mterem) o
otherwise.

Forr=2wehave m <r+1<3. Let G € Ex(n+ 1I;T,)). If A(G) > n—2, by
Lemmas 4.1 and 4.2 we have G = K,,_1 UK,. Thus, ¢(G) = (”;1) +1.IfA(G) <
n—3,then G € Ex(n+ 1;{K} ,—2, T, }). Thus, applying (4.3) we have

ex(n+1;T)

:max{

= max{

(n—=3—m)(n+1+m)

(n—1)(n—2)
2
(n—1)(n—2)
2

—+ 1,6.X(I’L+ 1;{K1,n—27Tn*})}

(n—=3—m)(n+1+m) +m2}

1

—l—m2+max{0 _(m—2)2—|—n—11}
2 ’ 2

(n—=3—m)(n+1+m) )

2
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For r > 3, by Lemma 4.6 we have ex(n — 1 +r;7,) = ex(n — 1 +r;{K1 2, T, }).
Thus applying (4.3) we obtain

ex(n—14+nT))
((n=3-m)(n—1+r+m) (r+2+m)(m—1)
> + 5 ]
ifr>4and2<m<r—1, “4.4)
-3 —1
r=3m=terem)
. otherwise.

By the previous argument, (4.4) is also true for r = 2.
Now suppose p = k(n— 1)+ r. Then k € N. Combining (4.4) with Theorem 4.1
we deduce the following result:

ex(p:T;)
n—1 (n=3—-m)(n—1+r+m) [(r+2+m)(m—1)
<k_1)( 2 )+ 2 +[ 2 ]
= ifr>4and2<m<r-—1,
(k_l)(ngl)+(n—3—m)(1;—1—|—r—|—m)

To see the result, we note that
(k_l)(ngl)+(n—3—m)(1;—1+r+m)+ (r+2+l;1)(m—l)]
:[(n—Z)(p—l)—Zr—m—?)}

2

+m?  otherwise.

and

(k—l)(n_l) n (n—3-—m)(n—1+r+m) 4

O

2 2
(n=2)(p—1)—m(r+2—m)—r—1
= 5 .
Corollary4.1.Supposep,n,rEN,pznz11,%<r§n—6andpzr(modn—
1). Then
r[(n—Z)(];—Z)—r if%grfn—l
-2)(p-3
(n )2(17 )—1—3 ifr=n—6,
R T [C e R AR
4 ifr=">5
(n—2)(p—-2)
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Proof. Clearly r > % >2. Setm=n—5—r. Thenl <m<r+2andn—-3=
m (mod r+2). It is evident that

—4
2<m<r—1 < nTSrSn—T

Asn > 11 we see that r > %5~ 4 implies r > 4. Now applying Theorem 4.4 we deduce
that

( (n—2)(p—1)—2r—(n—5—r)—3} B [(n—Z)(p—Z)—r
2 2
. 1f%§r§n—7,
APT) =Y (=) (p—1) = (1=5—r)(r+2— (n—5—1)) —r—1
2
\ if r=n—6or [%].
This yields the result. ]

Corollary 4.2. Suppose pn €N, p>n>11,2{nand p = "5+ T (mod n—1). Then

(n—2)(2p—3)+3.

ex(piTy) = !

Proof. Taking r = "5 and m = 0 in Theorem 4.4 we derive the result. [

Corollary 4.3. Suppose ppn € N, p>n> 1l and (n—1) | (p—2). Then

(n=2)(p—=1)=6)/2 ifn=0(
ex(p;T,) =4 (n=2)(p—=1)=7)/2 ifn=1(mod 4),
(n=2)(p—1)=3)/2 ifn=3 (mod 4).
Proof. Let m € {0,1,2,3} be given by n—3 = m (mod 4). Then clearly m =

1,2,3 or 0 according as n =0, 1,2 or 3 (mod 4). Now putting r = 2 in Theorem 4.4
and applying the above we obtain the result. [

mod 2),

Corollary 4.4. Suppose pn €N, p>n>1land (n—1) | (p—3). Then

(n=2)(p—1)/2—2 ifn=3 (mod5),
ex(p;T)) =< (n—=2)(p—1)/2—4 ifn=2,4 (mod>5),
(n=2)(p—1)/2—5 ifn=0,1 (mod>5).

Proof. Let m € {0,1,2,3,4} be given by n —3 = m (mod 5). Then clearly m =
2,3,4,0 or 1 accordingasn=0,1,2,3 or 4 (mod 5). Now putting r = 3 in Theorem
4.4 and applying the above we obtain the result. [
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In a similar way, putting r = 4 in Theorem 4.4 we deduce the following result.
Corollary 4.5. Suppose pon € N, p>n>1land (n—1) | (p—4). Then

(n—2)(p—1)/2—7  ifn=0 (mod6),
(n=2)(p—1)/2-5 ifn =42 (mod 6),
(n—=2)(p—1)—13)/2 ifn==+1 (mod 6),
(n=2)(p—1)=5)/2  ifn=3(mod6).

Corollary 4.6. Suppose pe N, p > 11, r € {0,1,...,9} and p = r (mod 10). Then

ex(p;T,) =

> n

((Op—r(10-7))/2 ifre{0,1,7,8,9},
Op—12)/2 ifr=2,
. Jop—192 ifr=>3

ex(p;T1y) = L
9p—22)/2 ifr=4,
(9p—21)/2 ifr=35,
(L (9p—16)/2 ifr=6.
Proof. The result follows from Theorems 4.1-4.3 and Corollaries 4.1-4.2. [

Theorem 4.5. Let p,n € Nwith6 <n <10and p > n, and letr € {0,1,...,n—2}
be given by p=r (modn—1).

i * n—2 n—1—r

(i) If n= 16,7, then ex(p;Tn):( )p 2( )

(ii) Ifn = 8,9, then

(n—=2)p—r(n—1-r) ifr4n—5s

ex(p;T,)) = (n=2)(p-2)

> +1 ifr=n-3.

(iii) If n = 10, then
4p—r(9—r)/2 ifr#4,5,

ex(p;T,)) =< 4p—7 ifr=>5,
4p—9 ifr=4.

Proof. Forre€ {0,1,n—5,n—4,n—3,n—2} the result follows from Theorems 4.1,
4.2 and 4.3. Now assume 2 <r<n—6. Thenr >2 > % By Lemma 4.7 we have

ex(n—1+r{Ki 2,7, })

)z,[(n—6—2r)(n—3>”_

If GE Ex(n—1+4+r,T;) and A(G) > n—2, using Lemmas 4.1 and 4.2 we see that
G =2 K,_1UK,. Thus,

—1
ex(n—1+nrT )= max{ (n 5 ) + (;) cex(n—1 +r;{K17n_2,Tn*})}

— (n—3)(r+2)+max{(n—5—r
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:max{(n;1> + (;),(n—3)(r+2)

+max{(n—5—r)2, [(n—6—2r)(n—3)}}}.

@ " @ ex(8 1 2:T5) = @ ¥ @
0+ () =)+ )

9 3
ex(943;Ty) = <2) + <2), ex(9+4;Tjy) = 43.

From this we deduce that

ex(7T4+2;Tg)

ex(8+3;Ty) =

Suppose p =k(n— 1)+ r. Then k € N. By Theorem 4.1,

ex(piT7) = (k—1) ("; 1) tex(n—1+rT)

:%‘F%(ﬂ—lﬁ—r;ﬂj)_ (n;l)

Now combining all the above we deduce the result. [
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