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Abstract

Let a15(n), a20(n) and a24(n) be defined by

q

∞∏
k=1

(1− qk)(1− q3k)(1− q5k)(1− q15k) =

∞∑
n=1

a15(n)q
n,

q

∞∏
k=1

(1− q2k)2(1− q10k)2 =

∞∑
n=1

a20(n)q
n,

q
∞∏
k=1

(1− q2k)(1− q4k)(1− q6k)(1− q12k) =
∞∑
n=1

a24(n)q
n (|q| < 1),

and let p > 3 be a prime. In this paper, for p ≡ 3 (mod 4) we reveal the connection
between a20(p) and residue-counts of x4−4x2+4x modulo p as x runs over 0, 1, . . . , p−1,
and the connection between a24(p) and residue-counts of x3+c/x modulo p as x runs over
1, 2, . . . , p − 1, where c is an integer not divisible by p. We also deduce the congruences
for a15(p), a24(p) modulo 16 and a20(p) modulo 4, and pose some analogous conjectures.

MSC(2020): 11A07, 11L10, 11E20, 11E25, 11F11, 11F20, 11F33, 11G20
Keywords: congruence; eta product; modular form; elliptic curve; quadratic form

1. Introduction

The Dedekind eta function η(z) is given by

η(z) = q
1
24

∞∏
n=1

(
1− qn

)
with q = e2πiz.

It is shown by Martin and Ono [13] that there are only finitely many newforms of weight 2
in the form of eta products, which are summarized in the following table:
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level eta product

11 η(z)2η(11z)2

14 η(z)η(2z)η(7z)η(14z)

15 η(z)η(3z)η(5z)η(15z)

20 η(2z)2η(10z)2

24 η(2z)η(4z)η(6z)η(12z)

27 η(3z)2η(9z)2

32 η(4z)2η(8z)2

36 η(6z)4

48
η(4z)4η(12z)4

η(2z)η(6z)η(8z)η(24z)

64
η(8z)8

η(4z)2η(16z)2

80
η(4z)6η(20z)6

η(2z)2η(8z)2η(10z)2η(40z)2

144
η(12z)12

η(6z)4η(24z)4

Now for each level N given in the table, we define aN (n) for n ≥ 1 to be the n-th Fourier
coefficient of the corresponding eta product. Let p be an odd prime with p - N . In [13],
for N ∈ {27, 32, 36, 64, 144} Martin and Ono gave the values of aN (p) in terms of the
representations of p by suitable binary quadratic forms.

For a ∈ Z and given positive integer m let
(
a
m

)
denote the Legendre-Jacobi-Kronecker

symbol. In [17], using a result due to Eichler the first author stated that for any prime
p ̸= 2, 3, 11,

(1.1) a11(p) = −
(
6

p

) p−1∑
x=0

(
x3 − 12x+ 38

p

)
.

In this paper, we give formulas for aN (p) with N ∈ {14, 15, 20, 24, 48, 80}, where p > 5 is

a prime. We first relate aN (p) with the sum
∑p−1

x=0

(
x3+Ax+B

p

)
by using the Modularity

Theorem, and then reveal the connections between aN (p) and quartic congruences modulo
p for N ∈ {20, 24, 48, 80} and p ≡ 3 (mod 4).

Let p > 3 be a prime, a, b ∈ Z and Np(a, b) be the number of incongruent residues
of x4 + ax2 + bx modulo p as x runs over 0, 1, . . . , p − 1. In [16], the first author related
Np(a, b) with the numbers of points on certain elliptic curves over Fp (the field with p
elements), and completely determined Np(a, b) for some special values of (a, b). Inspired
by the work in [16], in this paper we find the connection between a20(p) and Np(−4, 4)
for p ≡ 3 (mod 4), and deduce a formula for Np(c), which is the number of incongruent
residues of x3 + c/x modulo p as x runs over 1, 2, . . . , p − 1, where c is an integer not
divisible by p. It is surprising that Np(c) is in connection with a24(p) and a48(p), which
is proved by using the first author’s previous work on the numbers of solutions of quartic
congruences modulo p. The main results of this paper are summarized as follows:
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Theorem 1.1. Let p > 3 be a prime of the form 4k + 3 and

δ(p) =


0 if p ≡ 7, 23 (mod 40),

1 if p ≡ 3, 27, 31, 39 (mod 40),

2 if p ≡ 11, 19 (mod 40).

Then

a20(p) = −a80(p) =
5p+ 1

2
+ 2δ(p)− 4Np(−4, 4).

Theorem 1.2. Let p > 3 be a prime and c ∈ Z with p - c. Then

Np(c) = δ +
1

8

(
5p− 3 +

(
−c

p

)
a24(p)−

(
1 + (−1)

p−1
2
)

×
( (p−1)/2∑

x=1

(
x

p

)(
3

(
x2 − 4c

p

)
+

(
16c− 3x2

p

)
−
(
x2 − 4c

p

)(
16c− 3x2

p

))))
,

where

(1.2) δ =


2 if 8 | p− 5 and 27c is a quartic residue of p,

1 if 8 | p− 7 and

(
27c

p

)
= 1,

0 otherwise.

In particular, for p ≡ 3 (mod 4) we have

(1.3) Np(c) =


5p+ 5

8
+

1

8

(
−c

p

)
a24(p) if 8 | p− 7 and

(
3c

p

)
= 1,

5p− 3

8
+

1

8

(
−c

p

)
a24(p) otherwise.

We also deduce the following congruences for a15(p), a24(p), a48(p) modulo 16 and
a14(p), a20(p), a80(p) modulo 4, where p > 5 is a prime. The proofs are based on Theorems
1.1 and 1.2, and some known results on the number of representations of p as a linear
combination of four squares or triangular numbers.

Theorem 1.3. Let p > 3 be a prime. Then

a24(p) = (−1)
p−1
2 a48(p) ≡


p+ 1 (mod 16) if p ≡ 1 (mod 12),

4− (p+ 1) (mod 16) if p ≡ 5 (mod 12),

−(p+ 1) (mod 16) if p ≡ 11, 19, 23 (mod 24),

8− (p+ 1) (mod 16) if p ≡ 7 (mod 24).

Theorem 1.4. Let p be a prime such that p ̸= 2, 5. Then

a20(p) ≡ a80(p) ≡
{
0 (mod 4) if p ≡ 11, 19 (mod 20),

2 (mod 4) if p ̸≡ 11, 19 (mod 20).

Theorem 1.5. Let p be a prime such that p ̸= 2, 7. Then

a14(p) ≡
{
2 (mod 4) if p ≡ 1 (mod 8) or p ≡ ±3,±19,±27 (mod 56),

0 (mod 4) otherwise.
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Theorem 1.6. Let p be a prime with p > 5. Then

a15(p) ≡
{
p+ 1 (mod 16) if p ≡ 11, 19, 31, 59 (mod 60),

8 + 5(p+ 1) (mod 16) otherwise.

We remark that Köhler [12] gave the congruence for a24(p) modulo 16 in the case
p ≡ 7 (mod 8), and Alaca, Alaca and Aygin [2] proved that for any prime p > 11,

a11(p) ≡ p+ 1 (mod 5), a14(p) ≡ p+ 1 (mod 6), a15(p) ≡ p+ 1 (mod 4),

a20(p) ≡ p+ 1 (mod 6), a24(p) ≡ 0 (mod 2).

For positive integers a, b, c, d and non-negative integer n let N(a, b, c, d;n) be the num-
ber of representations of n by ax2+by2+cz2+dw2, and let t(a, b, c, d;n) be the number of

representations of n by ax(x+1)
2 + by(y+1)

2 + c z(z+1)
2 + dw(w+1)

2 , where x, y, z, w ∈ Z. Then
we have the following result.

Theorem 1.7. Let p be a prime with p ̸= 2, 11. Then

N(1, 1, 11, 11; p) =
4

5
(p+ 1) +

16

5
a11(p),

t(1, 1, 11, 11; p− 3) =
16

5
(p+ 1)− 16

5
a11(p)

and so

a11(p) ≡
{
1 (mod 2) if 4p = x2 + 11y2 with x, y ∈ Z and 2 - y,
0 (mod 2) otherwise.

We remark that Evink and Helminck [8] proved that a11(p) ≡ 0 (mod 2) for any prime
p = x2 + 11y2 ̸= 11 by using class field theory. For any odd prime p, it is known that

N(1, 1, 6, 6; p) = 2(p+ 1 + a24(p)) for p ̸= 3,(1.4)

N(1, 1, 5, 5; p) =
4

3
(p+ 1) +

8

3
a20(p) for p ̸= 5,(1.5)

N(1, 1, 7, 7; p) =
4

3
(p+ 1) +

8

3
a14(p) for p ̸= 7,(1.6)

N(1, 3, 5, 15; p) =
p+ 1

2
+

3

2
a15(p) for p ̸= 3, 5.(1.7)

Actually, the identities (1.4)-(1.7) can be found in [3, Theorem 1.12], [4, Theorem 7.1],
[18, Lemma 2.10] and [1, Theorem 3.3], respectively.

This paper is organized as follows. In Section 2, for N ∈ {14, 15, 20, 24, 48, 80} we give

explicit formulas for aN (p) in terms of the sum
∑p−1

x=0

(
x3+Ax+B

p

)
and prove Theorems

1.1 and 1.2, where p is an odd prime such that p - N . In Section 3, we prove Theorem 1.3.
In Section 4, we prove Theorems 1.4 and 1.5. In Section 5, we give the proof of Theorem
1.6. In Section 6, we prove Theorem 1.7. In Section 7, based on calculations by Maple we
pose three conjectures on a11(p) modulo 4 and a14(p), a20(p) modulo 8.

2. Formulas for aN(p) and proofs of Theorems 1.1

and 1.2

By numerical calculations, in [18] the first author found the following conjectural identities
analogous to (1.1) for aN (p) with N ∈ {14, 15, 20, 24, 48, 80}, where p is an odd prime such
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that p - N . This provides uniform formulas for aN (p) concerning newforms of weight 2
that are eta products.

Lemma 2.1 ([18, Conjecture 2.1]). Let p > 3 be a prime. Then

a14(p) = −
(
−3

p

) p−1∑
x=0

(
x3 − 75x− 506

p

)
,

a15(p) = −
(
−3

p

) p−1∑
x=0

(
x3 − 3x− 322

p

)
,

a20(p) =

(
−1

p

)
a80(p) = −

(
−3

p

) p−1∑
x=0

(
x3 − 12x− 11

p

)
,

a24(p) =

(
−1

p

)
a48(p) = −

(
−3

p

) p−1∑
x=0

(
x3 − 39x− 70

p

)
.

Proof. Let E : y2 = fE(x) denote an elliptic curve over Q, and let aE(1) = 1 and
aE(p) be defined for prime p by aE(p) = p + 1 − |{projective points of E over Fp}|. It

is well known (see for example [16, p.221]) that for p ≥ 3, aE(p) = −
∑p−1

x=0

(
fE(x)

p

)
.

By the Modularity Theorem (see for example [7, Theorem 8.8.1]), there is a normalized
newform gE(z) =

∑∞
n=1 agE (n)q

n of weight 2 for Γ0(NE), where NE denotes the algebraic
conductor of E, with trivial Nebentypus such that agE (p) = aE(p) for all primes p, that

is, agE (2) = aE(2) and agE (p) = −
∑p−1

x=0

(
fE(x)

p

)
for p ≥ 3. Now from this point on, let

E be an elliptic curve defined by one of the cubic polynomials in Lemma 2.1. One can
compute and show that

aE(2) =

{
1 for E : y2 = x3 − 75x− 506 and E : y2 = x3 − 3x− 322,

0 otherwise,

and with the aid of SAGE, one also has that

NE =


126 for E : y2 = x3 − 75x− 506,

45 for E : y2 = x3 − 3x− 322,

180 for E : y2 = x3 − 12x− 11,

72 for E : y2 = x3 − 39x− 70,

and the dimensions of the space Snew
2 (NE) of newforms of weight 2 for Γ0(NE) are given

by

dim(Snew
2 (NE)) =

{
2 for E : y2 = x3 − 75x− 506,

1 otherwise.

On the other hand, appealing to [5, Corollary 3.1], one can check that

∞∑
n=1

(
−3

n

)
aℓ(n)q

n ∈


Snew
2 (126) for ℓ = 14,

Snew
2 (45) for ℓ = 15,

Snew
2 (180) for ℓ = 20,

Snew
2 (72) for ℓ = 24.
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Therefore, for each pair

(E, ℓ) ∈
{
(y2 = x3 − 3x− 322, 15), (y2 = x3 − 12x− 11, 20), (y2 = x3 − 39x− 70, 24)

}
,

both gE(z) and
∑∞

n=1

(−3
n

)
aℓ(n)q

n lie in the same one-dimensional vector space with

constant terms 1, and thus, one has that for any prime p ≥ 3,
(
−3
p

)
aℓ(p) = agE (p) =

−
∑p−1

x=0

(
fE(x)

p

)
. By [10], Sturm’s theorem states that the order of vanishing at i∞ of

a holomorphic modular form of weight k for Γ0(N) is bounded by [SL2(Z) : Γ0(N)] k12 .
Now, for the case (E, ℓ) = (y2 = x3 − 75x − 506, 14), one can check that agE (p) and(
−3
p

)
a14(p) agree on primes p up to 47, and thus, the Fourier coefficients of gE(z) and∑∞

n=1

(−3
n

)
a14(n)q

n agree on n up to 48 (the Sturm’s bound for Γ0(126)), since they are
both newforms whose Fourier coefficients are completely determined by prime places. As
a result, one can conclude that gE(z) =

∑∞
n=1

(−3
n

)
a14(n)q

n by Sturm’s theorem, and(
−3
p

)
a14(p) = agE (p) = −

∑p−1
x=0

(
x3−75x−506

p

)
for any prime p ≥ 3.

The remaining equalities
(
−1
p

)
a20(p) = a80(p) and

(
−1
p

)
a24(p) = a48(p) follow from

similar reasoning as follows. From [5, Corollary 3.1] one finds that
∑∞

n=1

(−1
n

)
a20(n)q

n

and
∑∞

n=1

(−1
n

)
a24(n)q

n are newforms with trivial Nebentypus of weight 2 for Γ0(80) and
Γ0(48), respectively, whose Sturm bounds are 24 and 8, respectively. Verifying that the
Fourier coefficients of

∑∞
n=1

(−1
n

)
a20(n)q

n and
∑∞

n=1 a80(n)q
n hold for prime places up to

23, and the Fourier coefficients of
∑∞

n=1

(−1
n

)
a24(n)q

n and
∑∞

n=1 a48(n)q
n hold for prime

places up to 7, and using Sturm’s theorem one concludes that they are identical. The
proof is now complete.

Proof of Theorem 1.1. From Lemma 2.1 and [16, (2.5) and Theorem 2.8] we deduce
that

p+ 1−
(p
3

)
a20(p) = p+ 1 +

(p
3

)
a80(p) = p+ 1 +

p−1∑
x=0

(
x3 − 12x− 11

p

)

=


4Np(−4, 4)− 3p− 1

2
− 2δ(p) if p ≡ 7 (mod 12),

−4Np(−4, 4) +
7p+ 3

2
+ 2δ(p) if p ≡ 11 (mod 12).

Hence the result follows.

Proof of Theorem 1.2. Set Zp = {0, 1, . . . , p− 1}, Z∗
p = {1, 2, . . . , p− 1} and

δ1 =

{
1 if x4 ≡ −c (mod p) is insolvable,

0 if x4 ≡ −c (mod p) is solvable.

From [15, Lemma 5.1 and Remark 5.1], x4+ bx+ c ≡ 0 (mod p) is solvable when p - b and
p | (−27b4 + 256c3). Thus,

Np(c) = |{b ∈ Zp : x4 + bx+ c ≡ 0 (mod p) is solvable}|
= p− |{b ∈ Zp : x4 + bx+ c ≡ 0 (mod p) is insolvable}|
= p− δ1 − |{b ∈ Zp : p - b and x4 + bx+ c ≡ 0 (mod p) is insolvable}|
= p− δ1 − |{b ∈ Zp : p - b(−27b4 + 256c3)

and x4 + bx+ c ≡ 0 (mod p) is insolvable}|.
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By [15, Theorem 5.8], for p - b(−27b4 + 256c3), the congruence x4 + bx + c ≡ 0 (mod p)
is insolvable if and only if there exists a quadratic non-residue y modulo p satisfying
y3 − 4cy − b2 ≡ 0 (mod p). Hence, from the above we derive that

Np(c) = p− δ1 −
∣∣{b ∈ Zp : p - b(−27b4 + 256c3), b2 ≡ y3 − 4cy (mod p)

for some quadratic non-residue y of p}
∣∣

= p− δ1 −
∣∣{b ∈ Z∗

p : b2 ≡ y3 − 4cy (mod p) for some quadratic non-residue y of p}
∣∣

+
∣∣{b ∈ Z∗

p : p | (−27b4 + 256c3), b2 ≡ y3 − 4cy (mod p)

for some quadratic non-residue y of p}
∣∣.

When p - b and p | (−27b4 + 256c3), it is clear that
(
3c
p

)
= 1 and

y3 − 4cy − b2 ≡
(
y − 3b2

4c

)(
y +

3b2

8c

)2
(mod p).

Since
(
3b2·4c

p

)
=
(
3c
p

)
= 1 and

(
−3b2·8c

p

)
=
(
−2
p

)
, we see that∣∣{b ∈ Z∗

p : p | (−27b4 + 256c3), b2 ≡ y3 − 4cy (mod p)

for some quadratic non-residue y of p}
∣∣

=
∣∣{b ∈ Z∗

p : p | (−27b4 + 256c3),
(−2

p

)
= −1}

∣∣
=
∣∣{b ∈ Z∗

p : (4c/b)4 ≡ 27c (mod p), p ≡ 5, 7 (mod 8)}
∣∣ = 2δ.

Hence,

(2.1)
Np(c) = p− δ1 + 2δ −

∣∣{b ∈ Z∗
p : y3 − 4cy − b2 ≡ 0 (mod p)

for some y ∈ Z with
(y
p

)
= −1}

∣∣.
If
(
y
p

)
= −1, then y(y2 − 4c) ≡ b2 (mod p) for some b ∈ Z∗

p if and only if
(
y2−4c

p

)
= −1.

If y3 − 4cy ≡ x3 − 4cx (mod p) and x ̸≡ y (mod p), then x2 + xy + y2 ≡ 4c (mod p) and

so (2x + y)2 ≡ 16c − 3y2 (mod p). Now suppose y ∈ Zp,
(
y
p

)
= −1 and

(
y2−4c

p

)
= −1.

Then y(y2 − 4c) ≡ b2 (mod p) for two values b ∈ Z∗
p. If 3y2 ≡ 16c (mod p), then(

y2−4c
p

)
=
(
y2/4
p

)
= 1. This contradicts the assumption. If

(
16c−3y2

p

)
= −1, then

(2x + y)2 ≡ 16c − 3y2 (mod p) is insolvable and so y3 − 4cy ̸≡ x3 − 4cx (mod p) for

any x ̸≡ y (mod p). If
(
16c−3y2

p

)
= 1, from the above there exist two distinct numbers

y1, y2 ∈ Zp such that (2yi + y)2 ≡ 16c − 3y2 (mod p) and so y3 − 4cy − (y3i − 4cyi) =
1
4(y − yi)((2yi + y)2 + 3y2 − 16c) ≡ 0 (mod p) for i = 1, 2. If y ̸∈ {y1, y2}, then the
congruence x3 − 4cx − b2 ≡ 0 (mod p) has three distinct solutions x ≡ y, y1, y2 (mod p)

and so yy1y2 ≡ b2 (mod p). Since
(
y
p

)
= −1, we see that

(
y1y2
p

)
= −1 and so there

is a unique i ∈ {1, 2} such that
(
yi
p

)
= −1 and

(
y2i −4c

p

)
= −1. If y ∈ {y1, y2}, then

(2y+y)2 ≡ 16c−3y2 (mod p) and so 3y2 ≡ 4c (mod p). Hence,
(
y2−4c

p

)
=
(
−2y2

p

)
=
(
−2
p

)
.

Therefore,
(
3c
p

)
= 1 and

(
−2
p

)
= −1. Note that 2y1+y ≡ −(2y2+y) (mod p). For y = y1
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we have y2 ≡ −2y (mod p) and so
(
y2
p

)
=
(
−2
p

)(
y
p

)
= −1 · (−1) = 1. By symmetry, for

y = y2 we have
(
y1
p

)
= 1. Since −4 = (1+

√
−1)4, we see that the number of y ∈ Zp such

that
(
y
p

)
= −1 and y2 ≡ 4

3c =
(1+

√
−1)4

34
(−27c) (mod p) is δ given in Theorem 1.2. This

implies that∣∣∣{y ∈ Zp : y ∈ {y1, y2},
(
y

p

)
=

(
y2 − 4c

p

)
= −1,

(
16c− 3y2

p

)
= 1
}∣∣∣ = δ.

Therefore,∣∣∣{b ∈ Z∗
p : y3 − 4cy − b2 ≡ 0 (mod p) for some y ∈ Z with

(y
p

)
= −1

}∣∣∣
= 2
∣∣∣{y ∈ Zp :

(
y

p

)
=

(
y2 − 4c

p

)
=

(
16c− 3y2

p

)
= −1

}∣∣∣
+ 2
∣∣∣{y ∈ Zp : y ∈ {y1, y2},

(
y

p

)
=

(
y2 − 4c

p

)
= −1,

(
16c− 3y2

p

)
= 1
}∣∣∣

+
∣∣∣{y ∈ Zp : y ̸∈ {y1, y2},

(
y

p

)
=

(
y2 − 4c

p

)
= −1,

(
16c− 3y2

p

)
= 1
}∣∣∣

= 2
∣∣∣{y ∈ Zp :

(
y

p

)
=

(
y2 − 4c

p

)
=

(
16c− 3y2

p

)
= −1

}∣∣∣
+
∣∣∣{y ∈ Zp :

(
y

p

)
=

(
y2 − 4c

p

)
= −1,

(
16c− 3y2

p

)
= 1
}∣∣∣+ δ

=
∣∣∣{y ∈ Zp :

(
y

p

)
=

(
y2 − 4c

p

)
=

(
16c− 3y2

p

)
= −1

}∣∣∣
+
∣∣∣{y ∈ Zp :

(
y

p

)
=

(
y2 − 4c

p

)
= −1

}∣∣∣+ δ.

This together with (2.1) yields

(2.2)

Np(c) = p− δ1 + δ −
∣∣∣{y ∈ Zp :

(
y

p

)
=

(
y2 − 4c

p

)
= −1

}∣∣∣
−
∣∣∣{y ∈ Zp :

(
y

p

)
=

(
y2 − 4c

p

)
=

(
16c− 3y2

p

)
= −1

}∣∣∣.
For p ≡ 1 (mod 4) it is well known that x2 ≡ −1 (mod p) is solvable and so x4 ≡ −4 =
(1 +

√
−1)4 (mod p) is solvable. Now, it is clear that∑

y∈Zp

(
1−

(
y

p

))(
1−

(
y2 − 4c

p

))
= 4
∣∣∣{y ∈ Zp :

(
y

p

)
=

(
y2 − 4c

p

)
= −1

}∣∣∣+ 1−
(
−4c

p

)
+ δ2,

where

δ2 =


2 if 4 | p− 3 and

(
c

p

)
= 1,

4 if 4 | p− 1,

(
c

p

)
= 1 and −c is not a quartic residue of p,

0 otherwise.
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If y2 ≡ 4c (mod p), then
(
16c−3y2

p

)
=
(
4c
p

)
= 1. If 3y2 ≡ 16c (mod p), then

(
y2−4c

p

)
=(

4c/3
p

)
= 1. Thus,

∑
y∈Zp

(
1−

(
y

p

))(
1−

(
y2 − 4c

p

))(
1−

(
16c− 3y2

p

))
= 8
∣∣∣{y ∈ Zp :

(
y

p

)
=

(
y2 − 4c

p

)
=

(
16c− 3y2

p

)
= −1

}∣∣∣
+
(
1−

(
−4c

p

))(
1−

(
16c

p

))
,

= 8
∣∣∣{y ∈ Zp :

(
y

p

)
=

(
y2 − 4c

p

)
=

(
16c− 3y2

p

)
= −1

}∣∣∣+ (1 + (−1)
p−1
2 )
(
1−

(
c

p

))
.

Now, from (2.2) we deduce that

Np(c) = p− δ1 + δ +
1

4

(
1−

(
−c

p

)
+ δ2

)
− 1

4

∑
y∈Zp

(
1−

(
y

p

))(
1−

(
y2 − 4c

p

))
+

1

8

(
1 + (−1)

p−1
2

)(
1−

(
c

p

))
− 1

8

∑
y∈Zp

(
1−

(
y

p

))(
1−

(
y2 − 4c

p

))(
1−

(
16c− 3y2

p

))
= p+ δ − δ1 +

1

4
δ2 +

1

8

(
3 + (−1)

p−1
2

)(
1−

(
−c

p

))
− 1

8

∑
y∈Zp

(
1−

(
y

p

))(
1−

(
y2 − 4c

p

))(
3−

(
16c− 3y2

p

))
.

It is easy to see that −δ1 +
δ2
4 + 1

8(3 + (−1)
p−1
2 )
(
1−

(
−c
p

))
= 0. Thus,

(2.3) Np(c) = p+ δ − 1

8

∑
y∈Zp

(
1−

(
y

p

))(
1−

(
y2 − 4c

p

))(
3−

(
16c− 3y2

p

))
.

By [6, Theorem 2.1.2], we have
∑p−1

x=0

(
x2+mx+n

p

)
= −1 for m,n ∈ Z with m2 − 4n ̸≡

0 (mod p). Thus,

(2.4)
∑
y∈Zp

(
y2 − 4c

p

)
= −1,

∑
y∈Zp

(
16c− 3y2

p

)
=
(−3

p

) ∑
y∈Zp

(
y2 − 16c/3

p

)
= −

(−3

p

)
.

By [6, ex.14, p.207],

∑
y∈Zp

(
y2 − 4c

p

)(
y2 − 16c/3

p

)
= −1 +

(
−4c

p

) ∑
n∈Zp

(
n(n+ 1)(n+ 4

3)

p

)
.
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Therefore,∑
y∈Zp

(
y2 − 4c

p

)(
y2 − 16c/3

p

)

= −1 +
(−c

p

) ∑
n∈Zp

(
(n− 7

9)(n+ 2
9)(n+ 5

9)

p

)
= −1 +

(−c

p

) ∑
n∈Zp

(
n3 − 13

27n− 70
729

p

)

= −1 +
(−c

p

) ∑
x∈Zp

(
(x9 )

3 − 13
27 · x

9 − 70
729

p

)

and so

(2.5)
∑
y∈Zp

(
y2 − 4c

p

)(
y2 − 16c/3

p

)
= −1 +

(−c

p

) ∑
x∈Zp

(
x3 − 39x− 70

p

)
.

Since
∑

y∈Zp

(
y
p

)
= 0, from (2.4) and (2.5) we deduce that

∑
y∈Zp

(
1−

(
y

p

))(
1−

(
y2 − 4c

p

))(
3−

(
16c− 3y2

p

))
= 3

∑
y∈Zp

1− 3
∑
y∈Zp

(
y

p

)
− 3

∑
y∈Zp

(
y2 − 4c

p

)
−
(
−3

p

) ∑
y∈Zp

(
y2 − 16c/3

p

)

+
(−3

p

) ∑
y∈Zp

(
y2 − 4c

p

)(
y2 − 16c/3

p

)

+
∑
y∈Zp

(
y

p

)(
3

(
y2 − 4c

p

)
+

(
16c− 3y2

p

))
−
∑
y∈Zp

(
y

p

)(
y2 − 4c

p

)(
16c− 3y2

p

)

= 3p+ 3 +
(3c
p

) ∑
x∈Zp

(
x3 − 39x− 70

p

)

+
∑
y∈Zp

(
y

p

)(
3

(
y2 − 4c

p

)
+

(
16c− 3y2

p

)
−
(
y2 − 4c

p

)(
16c− 3y2

p

))
.

This together with (2.3) gives

Np(c) = p+ δ − 1

8

(
3p+ 3 +

(3c
p

) p−1∑
x=0

(
x3 − 39x− 70

p

)

+

p−1∑
y=0

(
y

p

)(
3

(
y2 − 4c

p

)
+

(
16c− 3y2

p

)
−
(
y2 − 4c

p

)(
16c− 3y2

p

)))
.

Applying Lemma 2.1 and the fact that
(
y
p

)
+
(
p−y
p

)
= (1 + (−1)

p−1
2 )
(
y
p

)
we obtain
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Np(c) = p+ δ − 1

8

(
3p+ 3−

(−c

p

)
a24(p) +

(
1 + (−1)

p−1
2
)

×
( (p−1)/2∑

y=1

(
y

p

)(
3

(
y2 − 4c

p

)
+

(
16c− 3y2

p

)
−
(
y2 − 4c

p

)(
16c− 3y2

p

))))
= δ +

1

8

(
5p− 3 +

(−c

p

)
a24(p)−

(
1 + (−1)

p−1
2
)

×
( (p−1)/2∑

y=1

(
y

p

)(
3

(
y2 − 4c

p

)
+

(
16c− 3y2

p

)
−
(
y2 − 4c

p

)(
16c− 3y2

p

))))
.

For p ≡ 3 (mod 4) we see that

δ =

 1 if 8 | p− 7 and

(
3c

p

)
= 1,

0 otherwise

and hence (1.3) follows. The proof is now complete.

Remark 2.1. Let p be a prime such that p ≡ 1 (mod 4) and so p = a2 + b2 with
a, b ∈ Z and a ≡ 3 (mod 4). Let m be an integer not divisible by p. From [6, Theorem
6.2.1] we deduce that

(p−1)/2∑
x=1

(
x

p

)(
x2 +m

p

)
=

±a if m
p−1
4 ≡ ±1 (mod p),

±b if m
p−1
4 ≡ ± b

a
(mod p).

Thus, the sums
∑(p−1)/2

x=1

(
x
p

)(
x2−4c

p

)
and

∑(p−1)/2
x=1

(
x
p

)(
16c−3x2

p

)
in Theorem 1.2 can

be evaluated for p ≡ 1 (mod 4).

3. Proof of Theorem 1.3

The purpose of this section is to prove the congruence for a24(p) modulo 16, where p > 3
is a prime. From now on we use [x] to denote the greatest integer not exceeding x, and
let Z2 = Z× Z and Z4 = Z× Z× Z× Z. For n = 0, 1, 2, . . . let

r2(n) =
∣∣{(x, y) ∈ Z2

∣∣ n = x2 + y2
}∣∣,

t2(n) =
∣∣∣{(x, y) ∈ Z2

∣∣ n =
x(x+ 1)

2
+

y(y + 1)

2

}∣∣∣.
For convenience we also define r2(n) = t2(n) = 0 for n ̸∈ {0, 1, 2, . . .}. It is well known
that for n = 1, 2, 3, . . . ,

(3.1) r2(n) = 4
∑

d|n,2-d

(−1)
d−1
2 , t2(n) = 4

∑
d|4n+1

(−1)
d−1
2 .

See for example [14, p.27] and [20, Theorem 4.3(iii)].
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Lemma 3.1. For n = 1, 2, 3, . . . we have

(3.2) r2(n) ≡
{
4 (mod 8) if n = m2 or 2m2 for m ∈ Z,
0 (mod 8) otherwise,

and for n = 0, 1, 2, . . . we have

(3.3) t2(n) ≡
{
4 (mod 8) if 4n+ 1 is a square,

0 (mod 8) if 4n+ 1 is not a square.

Proof. It is clear that r2(0) = 1 and t2(0) = 4. Now suppose that n is a positive
integer and n = 2αn0(2 - n0). From (3.1) we see that

r2(n) =r2(n0) = 4
∑
d|n0

(−1)
d−1
2 = 4

∑
d|n0

d2<n0

(
(−1)

d−1
2 + (−1)

1
2
(
n0
d
−1)
)
+ 4

∑
d|n0

d2=n0

(−1)
d−1
2

≡
{
4 (mod 8) if n0 is a square,

0 (mod 8) if n0 is not a square,

which yields (3.2). On the other hand, from (3.1) we deduce that

t2(n) = 4
∑

d|4n+1
d2<4n+1

(
(−1)

d−1
2 + (−1)

1
2
( 4n+1

d
−1)
)
+ 4

∑
d|4n+1

d2=4n+1

(−1)
d−1
2

≡
{
0 (mod 8) if 4n+ 1 is not a square,

4 (mod 8) if 4n+ 1 is a square.

Thus, the lemma is proved.

Proof of Theorem 1.3. From Lemma 2.1, a48(p) = (−1)
p−1
2 a24(p). Since x

3−x−1 ≡
b (mod p) implies that (p− x)3 − (p− x)−1 ≡ p− b (mod p), and x3 − x−1 ≡ 0 (mod p)
is clearly solvable, we see that Np(−1) is odd. Now, taking c = −1 in Theorem 1.2 we
derive that

a24(p) =

{
8Np(−1)− (5p+ 5) ≡ 8− (p+ 1) (mod 16) if 24 | p− 7,

8Np(−1)− (5p− 3) ≡ 8− (5p− 3) ≡ −(p+ 1) (mod 16) otherwise.

This proves the theorem in the case p ≡ 3 (mod 4).
Now assume that p ≡ 1 (mod 4). By [18, Theorem 4.15], t(2, 2, 3, 3; (p − 5)/4) =

2(p+ 1− a24(p)). Suppose p = 12k + 1 ≡ 1 (mod 12). Then

t(2, 2, 3, 3; (p− 5)/4)

=
∣∣∣{(x, y, z, w) ∈ Z4 : 3k − 1 = 2

(x(x+ 1)

2
+

y(y + 1)

2

)
+ 3
(z(z + 1)

2
+

w(w + 1)

2

)}∣∣∣
=

[(3k−1)/2]∑
n=0

t2(n)t2

(3k − 1− 2n

3

)
=

[(k−1)/2]∑
s=0

t2(3s+ 1)t2(k − 1− 2s).

Since 4(3s+1)+ 1 ≡ 2 (mod 3) we see that 4(3s+1)+ 1 is not a square. By Lemma 3.1,
8 | t2(3s+ 1) and 4 | t2(k − 1− 2s). Hence

2(p+ 1− a24(p)) = t(2, 2, 3, 3; (p− 5)/4) =

[(k−1)/2]∑
s=0

t2(3s+ 1)t2(k− 1− 2s) ≡ 0 (mod 32).
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It then follows that a24(p) ≡ p+ 1 (mod 16).
Now assume that p ≡ 5 (mod 12). By [3, Theorem 1.12], 2(p + 1 + a24(p)) =

N(1, 1, 6, 6; p). Also,

N(1, 1, 6, 6; p) = r2(0)r2(p) +

(p−5)/6∑
n=1

r2(n)r2(p− 6n) = 8 +

(p−5)/6∑
n=1

r2(n)r2(p− 6n).

Since p − 6n ≡ 5 (mod 6) we see that p − 6n is not represented by x2 and 2x2. Thus,
8 | r2(p− 6n), 4 | r2(n) and so 32 | r2(n)r2(p− 6n) for n = 1, 2, . . . , p−5

6 by Lemma 3.1. It
then follows that

2(p+ 1 + a24(p)) = N(1, 1, 6, 6; p) ≡ 8 (mod 32),

which yields a24(p) ≡ 4− (p+ 1) (mod 16). This completes the proof.

The Eisenstein series of weight 2 is given by

(3.4) E2(z) = 1− 24

∞∑
n=1

σ(n)e2πinz,

where σ(n) is the sum of positive divisors of n. For any prime p > 3, p+1+a24(p) can be
viewed as the p-th coefficient of η(2z)η(4z)η(6z) η(12z)− 1

24E2(z), and η(2z)η(4z)η(6z)η(12z)
and E2(z) are constituents of the space of holomorphic modular forms of weight 2 and
level Γ0(24) with trivial Nebentypus, so one may speculate that p + 1 + a24(p) might be
the p-th Fourier coefficient of another holomorphic modular form. In what follows, we
list all the eta quotients that are holomorphic modular forms of weight 2 and level Γ0(24)
with trivial Nebentypus and confirm this speculation.

Proposition 3.1. Let

f1(z) =
η(2z)3η(3z)6η(8z)2η(12z)15

η(z)2η(4z)5η(6z)9η(24z)6
, f2(z) =

η(2z)2η(3z)6η(8z)4η(12z)8

η(z)2η(4z)4η(6z)6η(24z)4
,

f3(z) =
η(3z)6η(4z)5η(12z)5

η(z)2η(2z)η(6z)5η(8z)2η(24z)2
, f4(z) =

η(2z)η(3z)6η(8z)η(12z)6

η(z)2η(4z)2η(6z)3η(24z)3
,

f5(z) =
η(2z)5η(3z)2η(8z)η(12z)18

η(z)2η(4z)4η(6z)9η(24z)7
, f6(z) =

η(2z)4η(3z)2η(8z)3η(12z)11

η(z)2η(4z)3η(6z)6η(24z)5
,

f7(z) =
η(2z)η(3z)2η(4z)6η(12z)8

η(z)2η(6z)5η(8z)3η(24z)3
, f8(z) =

η(2z)3η(3z)2η(12z)9

η(z)2η(4z)η(6z)3η(24z)4
,

f9(z) =
η(2z)5η(3z)6η(8z)η(12z)8

η(z)2η(4z)4η(6z)7η(24z)3
, f10(z) =

η(2z)7η(8z)2η(12z)13

η(z)2η(3z)2η(4z)7η(6z)η(24z)6
,

f11(z) =
η(2z)6η(6z)2η(8z)4η(12z)6

η(z)2η(3z)2η(4z)6η(24z)4
, f12(z) =

η(2z)3η(4z)3η(6z)3η(12z)3

η(z)2η(3z)2η(8z)2η(24z)2
,

f13(z) =
η(2z)5η(6z)5η(8z)η(12z)4

η(z)2η(3z)2η(4z)4η(24z)3
, f14(z) =

η(2z)7η(3z)2η(12z)11

η(z)2η(4z)3η(6z)7η(24z)4
,

f15(z) =
η(2z)9η(6z)η(8z)η(12z)6

η(z)2η(3z)2η(4z)6η(24z)3
.
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Then one has that

f1(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

1

48
E2(2z) +

5

72
E2(3z) +

1

16
E2(4z)

− 7

48
E2(6z)−

1

24
E2(8z) +

1

144
E2(12z) +

5

72
E2(24z),

f2(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

1

24
E2(3z) +

1

16
E2(4z)

− 5

72
E2(6z)−

1

24
E2(8z)−

1

48
E2(12z) +

5

72
E2(24z),

f3(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z)−

1

16
E2(2z)−

1

24
E2(3z) +

1

16
E2(4z)

+
23

144
E2(6z)−

1

24
E2(8z)−

5

48
E2(12z) +

5

72
E2(24z),

f4(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z)−

1

48
E2(2z) +

1

72
E2(3z) +

1

16
E2(4z)

+
1

144
E2(6z)−

1

24
E2(8z)−

7

144
E2(12z) +

5

72
E2(24z),

f5(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

1

16
E2(2z) +

5

72
E2(3z)−

1

48
E2(4z)

− 23

144
E2(6z) +

5

144
E2(12z) +

1

18
E2(24z),

f6(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

1

24
E2(2z) +

1

24
E2(3z)−

1

12
E2(6z)

− 1

48
E2(8z) +

1

16
E2(24z),

f7(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z)−

1

48
E2(2z)−

1

24
E2(3z) +

1

16
E2(4z)

+
7

48
E2(6z)−

1

12
E2(8z)−

5

48
E2(12z) +

1

12
E2(24z),

f8(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

1

48
E2(2z) +

1

72
E2(3z) +

1

48
E2(4z)

− 1

144
E2(6z)−

1

24
E2(8z)−

5

144
E2(12z) +

5

72
E2(24z),

f9(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

1

16
E2(2z) +

1

8
E2(3z) +

1

16
E2(4z)

− 43

144
E2(6z)−

1

24
E2(8z) +

1

16
E2(12z) +

5

72
E2(24z),

f10(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

5

48
E2(2z) +

5

72
E2(3z)−

3

16
E2(4z)

− 1

16
E2(6z) +

1

24
E2(8z) +

5

144
E2(12z) +

1

24
E2(24z),

f11(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

1

12
E2(2z) +

1

24
E2(3z)−

7

48
E2(4z)

− 1

24
E2(6z) +

1

24
E2(8z) +

1

48
E2(12z) +

1

24
E2(24z),

f12(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

1

48
E2(2z)−

1

24
E2(3z)−

1

48
E2(4z)

+
1

48
E2(6z) +

1

24
E2(8z)−

1

48
E2(12z) +

1

24
E2(24z),
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f13(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

1

16
E2(2z) +

1

72
E2(3z)−

5

48
E2(4z)

− 1

48
E2(6z) +

1

24
E2(8z) +

1

144
E2(12z) +

1

24
E2(24z),

f14(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

5

48
E2(2z) +

1

8
E2(3z)−

1

16
E2(4z)

− 5

16
E2(6z) +

1

24
E2(8z) +

5

48
E2(12z) +

1

24
E2(24z),

f15(z) = η(2z)η(4z)η(6z)η(12z)− 1

24
E2(z) +

7

48
E2(2z) +

1

8
E2(3z)−

13

48
E2(4z)

− 5

48
E2(6z) +

1

24
E2(8z) +

1

16
E2(12z) +

1

24
E2(24z).

Proof. These follow from the facts that fi(z) are all holomorphic modular forms of
weight 2 and level Γ0(24) with trivial Nebentypus by [9], and η(2z)η(4z)η(6z)η(12z) and
E2(z) − tE2(tz) for t|24 form a basis for the vector space of such holomorphic modular
forms by [7, Chapter 4].

Corollary 3.1. For i = 1, . . . , 15, let fi(z) be defined as in Proposition 3.1, and write
fi(z) =

∑∞
n=0 bi(n)e

2πinz. Then for any prime p > 3, one has that bi(p) = a24(p) + p+ 1
for i = 1, . . . , 15.

Proof. These follow from equating the p-th coefficients on both sides of the identities of
Proposition 3.1. For example, equating the p-th coefficients on both sides of the equation
associated with f1(z), one deduces that b1(p) = a24(p) + σ(p) = a24(p) + p+ 1.

Remark 3.1 From Proposition 3.1 we deduce Corollary 3.1. Combining Corollary 3.1
with Theorem 1.3 yields the congruences for bi(p) modulo 16, where p > 3 is a prime and
i ∈ {1, 2, . . . , 15}.

4. Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4. We first assume that p ≡ 3 (mod 4). By Theorem 1.1,

a20(p) = −a80(p) ≡
5p+ 1

2
+ 2δ(p) ≡


p+ 1

2
(mod 4) if p ≡ 3, 27, 31, 39 (mod 40),

p− 3

2
(mod 4) if p ≡ 7, 11, 19, 23 (mod 40),

≡
{
0 (mod 4) if p ≡ 11, 19 (mod 20),

2 (mod 4) if p ≡ 3, 7 (mod 20).

Now assume that p ≡ 1 (mod 4). By [21, Theorem 4.2],

(4.1) t
(
1, 1, 5, 5;

p− 3

2

)
=

8

3
(p+ 1)− 8

3
a20(p).

On the other hand,

(4.2) t
(
1, 1, 5, 5;

p− 3

2

)
=

[(p−3)/10]∑
n=0

t2(n)t2

(p− 3

2
− 5n

)
.

If 4n+1 is a square, then n is even and so 4
(p−3

2 −5n
)
+1 ≡ 5 (mod 8). Thus 4

(p−3
2 −5n

)
+1

is not a square. By (3.3), we have 4 | t2(n), 8 | t2(p−3
2 − 5n) and so 32 | t2(n)t2(p−3

2 − 5n).

15



If 4n+ 1 is not a square, then 8 | t2(n), 4 | t2(p−3
2 − 5n) and so 32 | t2(n)t2(p−3

2 − 5n) by
(3.3). Hence, from (4.1) and (4.2) we deduce that

8

3
(p+ 1)− 8

3
a20(p) = t

(
1, 1, 5, 5;

p− 3

2

)
=

[(p−3)/10]∑
n=0

t2(n)t2

(p− 3

2
− 5n

)
≡ 0 (mod 32),

which yields a20(p) ≡ p + 1 ≡ 2 (mod 4). To complete the proof, we note that a20(p) =

(−1)
p−1
2 a80(p) by Lemma 2.1.

Remark 4.1 Let p > 5 be a prime, and let #Ep(y
2 = x3 − 12x− 11) be the number

of points on the elliptic curve y2 = x3 − 12x − 11 over Fp. In [11], Kim, Koo and Park
proved the first author’s conjecture:

#Ep(y
2 = x3 − 12x− 11) ≡

{
6 (mod 12) if p ≡ 3, 7 (mod 20),

0 (mod 12) otherwise.

This together with Lemma 2.1 yields the congruence for a20(p) modulo 12.

Proof of Theorem 1.5. By [18, Lemma 2.10], N(1, 1, 7, 7; p) = 4
3(p + 1) + 8

3a14(p).
By (3.2), for n = 1, 2, . . . , [p7 ],

r2(n)r2(p− 7n) ≡
{
16 (mod 32) if n and p− 7n are represented by x2 or 2x2,

0 (mod 32) otherwise.

Since r2(0) = 1 and r2(p) = 4(1 + (−1)
p−1
2 ), we derive that

4

3
(p+ 1) +

8

3
a14(p)− 4(1 + (−1)

p−1
2 )

≡ N(1, 1, 7, 7; p)− r2(p) =

[p/7]∑
n=1

r2(n)r2(p− 7n)

≡
{
16 (mod 32) if p is only represented by one form in {x2 + 7y2, x2 + 14y2, 2x2 + 7y2},
0 (mod 32) otherwise.

It is well known (see for example [19, Corollary 4.2 and Theorem 11.2]) that

p = x2 + 7y2 (x, y ∈ Z) ⇐⇒ p ≡ 1, 9, 11 (mod 14),

p = x2 + 14y2 or 2x2 + 7y2 (x, y ∈ Z) ⇐⇒ p ≡ 1, 9, 15, 23, 25, 39 (mod 56).

Thus,

4

3
(p+1)+

8

3
a14(p)−4(1+(−1)

p−1
2 ) ≡

{
16 (mod 32) if p ≡ 11, 29, 37, 43, 51, 53 (mod 56),

0 (mod 32) otherwise.

That is,

p+ 1

2
+ a14(p) +

1

2
(1 + (−1)

p−1
2 ) ≡

{
2 (mod 4) if p ≡ 11, 29, 37, 43, 51, 53 (mod 56),

0 (mod 4) otherwise,

which yields the result.

16



5. Proof of Theorem 1.6

For any non-negative integer n, let Tn be the number of integral solutions to the equation
n = x2 + 3y2. Then clearly T0 = 1. By [19, Theorem 4.1], for n = 1, 2, 3, . . . we have

Tn =



6
∑
k|n

4

(
−3

k

)
if 4 | n,

2
∑
k|n

(
−3

k

)
if 2 - n,

0 if 4 | n− 2.

Thus T3m = Tm for m = 1, 2, 3, . . .. If m is a positive integer such that 3 - m, then clearly∑
k|m

(
−3

k

)
=
∑
k|m

k2<m

((−3

k

)
+

(
−3

m/k

))
+
∑
k|m

k2=m

(
−3

k

)
≡
{
1 (mod 2) if m is a square,

0 (mod 2) otherwise

and so

Tm ≡
{
2 (mod 4) if m is a square,

0 (mod 4) if m is not a square.

Hence, for n = 1, 2, 3, . . . we have

Tn ≡
{
2 (mod 4) if n = x2 or 3x2 for x ∈ Z,
0 (mod 4) otherwise

and so

TnTp−5n ≡
{
4 (mod 8) if n and p− 5n are represented by x2 or 3x2,

0 (mod 8) otherwise.

Note that T0 = 1 and Tp = 2
(
1 +

(p
3

))
. It then follows that

N(1, 3, 5, 15; p)

=
∣∣{(x, y, z, w) ∈ Z4 : p = x2 + 3y2 + 5(z2 + 3w2)

}∣∣ = [(p−1)/5]∑
n=0

TnTp−5n

≡



T0Tp + 4 ≡ 2
((p

3

)
− 1
)

(mod 8)

if p is only represented by one form in {x2 + 5y2, x2 + 15y2, 3x2 + 5y2},

T0Tp + 4 + 4 ≡ 2
((p

3

)
+ 1
)

(mod 8)

if p is represented by x2 + 5y2 and x2 + 15y2,

T0Tp = 2
((p

3

)
+ 1
)

(mod 8)

if p is not represented by any form in {x2 + 5y2, x2 + 15y2, 3x2 + 5y2}.

It is well known (see [6] or [19]) that

p = x2 + 5y2 ⇐⇒ p ≡ 1, 9 (mod 20),

p = x2 + 15y2 ⇐⇒ p ≡ 1, 19 (mod 30),

p = 3x2 + 5y2 ⇐⇒ p ≡ 17, 23 (mod 30).
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Thus,

N(1, 3, 5, 15; p) ≡



2
((p

3

)
− 1
)
≡ 4 (mod 8) if p ≡ 29, 41 (mod 60),

2
((p

3

)
− 1
)
≡ 0 (mod 8) if p ≡ 19, 31 (mod 60),

2
((p

3

)
− 1
)
≡ 4 (mod 8) if p ≡ 17, 23 (mod 30),

2
((p

3

)
+ 1
)
≡ 4 (mod 8) if p ≡ 1, 49 (mod 60),

2
((p

3

)
+ 1
)
≡ 4 (mod 8) if p ≡ 7, 13 (mod 30),

2
((p

3

)
+ 1
)
≡ 0 (mod 8) if p ≡ 11, 59 (mod 60).

Now applying (1.7) gives

a15(p) =
1

3
(2N(1, 3, 5, 15; p)− p− 1)

≡


1

3
(−p− 1) ≡ p+ 1 (mod 16) if p ≡ 11, 19, 31, 59 (mod 60),

1

3
(8− p− 1) ≡ 8 + 5(p+ 1) (mod 16) otherwise.

This proves Theorem 1.6.

6. Proof of Theorem 1.7

It is known (see [7, Chapter 4]) that the generating function of N(1, 1, 11, 11;n) is a
holomorphic modular form of weight 2 and level Γ0(44). Using Sturm’s theorem [10], one
can verify that

∞∑
n=0

N(1, 1, 11, 11;n)e2πinz = − 1

30
E2(z) +

1

15
E2(2z)−

2

15
E2(4z) +

11

30
E2(11z)

− 11

15
E2(22z) +

22

15
E2(44z) +

16

5
η(z)2η(11z)2

+
48

5
η(2z)2η(22z)2 +

64

5
η(4z)2η(44z)2,

where E2(z) is given by (3.4). Equating the p-th coefficients on both sides yields the
identity

N(1, 1, 11, 11; p) =
4

5
(p+ 1) +

16

5
a11(p).

Also, equating the 2p-th and 4p-th coefficients on both sides gives

N(1, 1, 11, 11; 2p) =
4

5
(p+ 1) +

16

5
a11(2p) +

48

5
a11(p),

N(1, 1, 11, 11; 4p) = 4(p+ 1) +
16

5
a11(4p) +

48

5
a11(2p) +

64

5
a11(p).

On the other hand, by [18, Corollary 4.4], one has that

t(1, 1, 11, 11; p− 3) = N(1, 1, 11, 11; 4p)−N(1, 1, 11, 11; 2p).
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Combining the above three identities gives

t(1, 1, 11, 11; p− 3) =
16

5
(p+ 1) +

16

5
a11(p) +

32

5
a11(2p) +

16

5
a11(4p).

Since a11(2) = −2, a11(4) = 2 and a11(n) is multiplicative, we get

t(1, 1, 11, 11; p− 3) =
16

5
(p+ 1) +

(16
5

− 64

5
+

32

5

)
a11(p) =

16

5
(p+ 1)− 16

5
a11(p).

By (3.3), for n = 0, 1, . . . , [p−3
11 ],

t2(n)t2(p− 3− 11n) ≡
{
16 (mod 32) if 4n+ 1 and 4(p− 3− 11n) + 1 are squares,

0 (mod 32) otherwise

≡
{
16 (mod 32) if 4p = x2 + 11y2 with x, y ∈ Z and y2 = 4n+ 1,

0 (mod 32) otherwise.

Thus,

16

5
(p+ 1)− 16

5
a11(p) = t(1, 1, 11, 11; p− 3) =

[(p−3)/11]∑
n=0

t2(n)t2(p− 3− 11n)

≡
{
16 (mod 32) if 4p = x2 + 11y2 with x, y ∈ Z and 2 - y,
0 (mod 32) otherwise.

This yields the remaining result.

7. Three conjectures

In light of Theorems 1.3–1.7, some computational experiment leads to the following con-
jectures.

Conjecture 7.1. Let p be a prime with p > 5.
(i) If p ≡ 1, 9 (mod 20) and so p = x2 + 25y2 for some x, y ∈ Z, then

p+ 1 + a20(p) ≡
{
0 (mod 8) if 20 | p− 1 and 2 | x, or if 20 | p− 9 and 2 | y,
4 (mod 8) if 20 | p− 1 and 2 | y, or if 20 | p− 9 and 2 | x.

(ii) If p ̸≡ 1, 9 (mod 20), then

p+ 1 + a20(p) ≡


0 (mod 8) if p ≡ 13, 19, 37, 39 (mod 40),

2 (mod 8) if p ≡ 3, 7 (mod 40),

4 (mod 8) if p ≡ 11, 17, 31, 33 (mod 40),

6 (mod 8) if p ≡ 23, 27 (mod 40).

Conjecture 7.2. Let p be a prime such that p ≡ 1, 3, 4, 5, 9 (mod 11) and so 4p =
x2 + 11y2 for some integers x and y. Then

p+ 1 + a11(p) ≡

{
0 (mod 4) if x ≡ 0 (mod 2),( x

11

)
(mod 4) if x ≡ p (mod 4).
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Conjecture 7.3. Let p be an odd prime with p ̸= 7.
(i) Suppose that p ≡ 1, 2, 4 (mod 7) and so p = x2 + 7y2 for some integers x and y.

Then

p+ 1 + a14(p) ≡



2(1 + (−1)
p−1
8

+ y
4 ) (mod 8) if p ≡ 1 (mod 8),

2

(
1− (−1)

p−3
8

+
(x−1)2−1

8

(x
7

))
(mod 8) if p ≡ 3 (mod 8),

2
(
1− (−1)

1
2(x−(

x
7 ))
)

(mod 8) if p ≡ 5 (mod 8),

0 (mod 8) if p ≡ 7 (mod 8).

(ii) Suppose that p ≡ 3, 5, 6 (mod 7). If p ≡ 1 (mod 8) and so p = x2 + 16y2 for some
x, y ∈ Z, then p+ 1 + a14(p) ≡ 2(1 + (−1)y) (mod 8).
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