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CONSECUTIVE NUMBERS WITH THE SAME LEGENDRE SYMBOL

ZHi-HoNG SuUN

ABSTRACT. Let p be an odd prime, and R, be a complete set of residues (mod p). The
goal of the paper is to determine all the values of n (n € Rp) such that (%) = ("—H) or

p
("771) = (%) = (”T'fl), where (5) is the Legendre symbol.

1.Introduction.

Let p be an odd prime, and (;) be the Legendre symbol, and let R, be a complete set
of residues modulo p. It is well known that (see [D])

1) {n 1) = () =1 ne R} =121
and
) {n |5 = () = -t ner,}| = )

where [-] is the greatest integer function.
In this paper we construct two or three consecutive numbers with the same value of
Legendre symbols by proving the following two theorems.

Theorem 1. Let p be an odd prime, R, be a complete set of residues (mod p), and let g
be a primitive root of p. Then

(13 =5 =1, nen,}

(g°" — 1)

-3
g (mod p), zx € Ry, k=1,2,... ,[p—]}

and

(n1C) = (") =L ner,

(g%—l — 1)

17 (mod p), yx € Rp, k=1,2,... ,[—]}

:{yk‘ykz
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Theorem 2. Let p be an odd prime, F, = Z/pZ be the residue class ring modulo p, and
let Fl,» O F), be the field with p? elements. If g is a generator of the cyclic subgroup of
Fo (= Fyp2 —{0}) of order p — (_71), then

p—(=L

{n|<”;1):<g):<n;1>,ner}:{i%;_p_l SN =)

We remark that if p = 1 (mod 4) then g is a primitive root (mod p), and if p = 3 (mod 4)
we may take F,2 = {a+bi | a,b € F,} and write g = a+ bi with a,b € F), and a*+b* = 1.
In the paper we also establish the following result.

Theorem 3. Let p be an odd prime, and n € Z with n # 0,+1 (mod p). Then

n—1, ny_ n+l1 n:(xz—i—l)z
= @= () = a= Bt

(mod p) for some x € Z.

Throughout this paper, we denote the set of integers by Z as usual, and identify (a+pZ)

with (%) for a € Z. For later convenience, we will also denote the Legendre symbol (p)
by x(n).
2. Proof of Theorem 1.

Fork=1,2,...,(p—3)/2let m) € R, be given by my = (g8 —1)?/(4¢*) (mod p). Then
mi+1 = (g"+1)? /(4g ) (mod p). So X(mk) (m;ﬁ—l) (—1)k. Ifs,t € {1,2,..., 252}
with s # t, then g5 # 1 (mod p) and so g% — g # (¢° — ¢*)/g° ™" (mod p). This implies
that ¢° + g7 # ¢* + ¢! (mod p) and so g'(g° — 1)2 # g (gt —1)2 (mod p). Hence
ms Z my; (mod p). Since

Hn’ x(n) = x(n+1), neRpH: [p;3]+[17;1] _p—3

by (1) and (2), we obtain
{n] x(n)=x(n+1), ne R,} = {my,mo,... ,mpz;s}.

This together with the fact that x(my) = (—1)* yields the result.
Remark 1. Let p > 3 be a prime, and n € Z with p{n(n + 1). It follows from Theorem

1 that
(z—1)°

4
Using Theorem 1 one can also derive that

x(n)=x(n+1) < n= (mod p) for some z € Z.

2x(—1 — 2x(—1
Z n HTX() (mod p) and Z n STX() (mod p).
x(n)=x(n+1)=1 x(n)=x(n+1)=-1
neR, neR,
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3. Proof of Theorem 2.
For s € {1,2,...,[EZ%]} let n, = 2g(P~x(=D)/442s /(g4s _ 1) Then n, € Fj2 since
g* # 1. We claim that ng € F,. If p=1 (mod 4), then g?~! = 1 and so g» = g. Hence

g € F, and therefore ny € F,. If p = 3 (mod 4), then gP*! = g?~X(=1) = 1 and hence

g~ ' = gP. So we have

+1 +1 +1 +1 +1
ng—l—2s _|_g_(pT+25) :ng—i—Qs +( pT+25)p — tI‘( pT—i—Qs) e Fp7

g g

where tr(-) is the trace function. Now, using the above and the fact that g(P*1/2 = —1

we see that 9

ng-H+2S —+ g_(pTH+25)

Nng = — € Fj.

So the assertion holds.
Since ¢g®P—x(=1)/2 = _] it is easily seen that

ng—1= (g(p—x(—l))/4+2s + 1)2/(943 —1),
Ng = (1 + g(p_X(_l))/4)2 25/ 4s
ng+1= (g(P*X(*l))/‘L + 928) /(948 i 1)

From this one can check that

ng 1
Ur

_i(g +g7 g T T 4 g TETE)?,

Ifp=3 (mod 4), then g* + g7% = g¥ + g*? = tr(¢*) € F,. If p=1 (mod 4), then g € F,
and so g* + g7 F € F,. Thus, by the above we see that ns; + 1 = nsz? and ns — 1 = nsy?
for some x,y € F),. Observe that ng(ns — 1)(ns +1) # 0 since 1 < s < (p— 3)/8. So we
have

X(ns - 1) = X(ns) = X(ns + 1) and hence X(_ns - 1) = X<_ns> = X(_ns + 1)'

If s,t € {1,2,... ,[7%3]} with s # t, then g2 £ 41 and so g>t% (g% £ ¢%%) #
g*® & ¢g?'. This implies
2s( 4 2t 4 g*° g*'
g*(g* — 1) # +£¢*"(¢** — 1) and hence P 7éj:94t_1.

Thus ng # +n;.
According to [BEW] or [D], if b, ¢ € Z with b*> — 4c # 0 (mod p) then

p—1

(3) > x(P+bnte)=-1.

n=0



4 ZHI-HONG SUN

Set
(4) R=|fn|x(n—1)=x(n) =x(n+1) =1, ne R
and
(5) N=[{n|x(n—1)=x(n) = x(n+1)= 1, n € F}|.

Then we see that
(6) > (T+x(n—1))1+x(n)(1+x(n+1)) =8R

and

So, by (3) we have

8(R+ N) = §2{1+Xn—1)u+xm»@+xm+1»

+u—xm—1»u—xm»@—xm+1»}

p—2

:22{1—1—){(712 —n) + x(n*+n)+ x(n®* - 1)}
= 2(p—3)+2{ 3" (x(n = n) + x(n + ) + x(n ~ 1)) —2(2) — x(~1)}
n=0
= 9(p— 3) — 6 — 4x(2) — 2x(~1) = 16{° ).
That is,

3
R+N_mp ].

Now, combining the above we prove the theorem.
Remark 2. Let p = 1 (mod 4) be a prime, p = a® + b*(a,b € Z), a = 1 (mod 4), and ¢
be a primitive root of p. If R and N are deﬁned by (4) and (5) respectively, using (3), (6)

and the fact that Y 7 _ ( ) =0and Y"~ ("%”) = —2(%)@ (cf. [J],[BE, Theorem 4.4])
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we see that

15 1
R= gZ(1+X(n—1))(1+x(n))(1+><(n+1)) —1-5x(2)
n=0
1 = 1
= {P+ 2 (0 =)+ 10 + )+ x(0? = D+ x(0 =) |~ 1= Sx(2)
n=0
1 1
= g(p-—fi—-2x(2)a)—-1-— §X(2)
plf _azd if p=1 (mod 8),
] B+ et if p=5 (mod 8)
and therefore
N:2[p—3 Cp_ plyadl if p=1 (mod 8),
8 b ol if p=5 (mod 8)

4. Proof of Theorem 3.
Let Qo(p) be defined as in [S]. From [S, Theorem 2.4] and [S, Corollary 3.2] we see that

-1 1
(n ):(E):(n+ ) <= n*=k”+1 (mod p) for some k € Qo(p)
p p p
4_6 2 1
— n’= (ﬁ)2 +1 (mod p) for some z € Z
2 1 4
— n?= ﬁ (mod p) for some x € Z
2 1 2
< n= % (mod p) for some = € Z.
So the theorem is proved.
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