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1. Introduction.
Let Z and N be the set of integers and the set of positive integers respectively.

For a, b, n ∈ N let

tn(a, b) =
∣∣{〈x, y〉 : n = ax(x− 1)/2 + by(y − 1)/2, x, y ∈ N}∣∣

and

ψ(q) =
∞∑

k=1

qk(k−1)/2 (|q| < 1).

Then clearly

(1.1) ψ(qa)ψ(qb) = 1 +
∞∑

n=1

tn(a, b)qn (|q| < 1).

Since Legendre it is known that

(1.2) tn(1, 1) =
∑

k|4n+1

(−1)
k−1
2 .

Ramanujan (see [B, pp. 302-303]) found that if |q| < 1, then

qψ(q)ψ(q7) =
q

1− q
− q3

1− q3
− q5

1− q5
+

q9

1− q9
+

q11

1− q11
− q13

1− q13
+ · · ·
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and

qψ(q2)ψ(q6) =
q

1− q2
− q5

1− q10
+

q7

1− q14
− q11

1− q22
+ · · · .

In 1999, K.S. Williams [W] proved the above two Ramanujan identities by using
the theory of binary quadratic forms. By (1.1), the above Ramanujan identities
are equivalent to

(1.3) tn(1, 3) =
∑

k|2n+1

(k

3

)
and tn(1, 7) =

∑

k|n+1,2-k

(k

7

)
,

where
(

k
m

)
is the Legendre-Jacobi-Kronecker symbol. In 2006 the author and

K.S. Williams [SW2, p. 369] showed that if n + 1 = 3αn0 (3 - n0), then

(1.4) tn(3, 5) =
1 + (−1)α(n0

3 )
2

∑

k|n+1, 2-k

( k

15

)
;

if n + 2 = 3αn0 (3 - n0), then

(1.5) tn(1, 15) =
1− (−1)α(n0

3 )
2

∑

k|n+2, 2-k

( k

15

)
.

In the paper we use the results in [SW1] to obtain the formulae for tn(1, b)
in the cases b = 2, 4, 5, 9, 11, 13, 19, 23, 25, 27, 31, 37, 43, 67, 163. Our method is
based on the connection between tn(a, b) and the number of representations of
8n+a+b by certain binary quadratic forms, whose corresponding class number
of discriminant is 1, 2 or 3. We also obtain some explicit formulas for tn(a, b)
when 8n + a + b or 4n + (a + b)/2 is an odd prime power, and give a general
criterion for tn(a, b) > 0.

2. General formulas for tn(a, b).
Let Z2 = {〈x, y〉 : x, y ∈ Z}. For n ∈ N and a, b, c ∈ Z with a, c > 0 and

b2 − 4ac < 0 let

R(a, b, c;n) = |{〈x, y〉 ∈ Z2 : n = ax2 + bxy + cy2}|.

Theorem 2.1. Let a, b, n ∈ N. Then

4tn(a, b) = |{〈x, y〉 ∈ Z2 : 8n + a + b = ax2 + by2, 2 - xy}|

=





|{〈x, y〉 ∈ Z2 : 2n + a+b
4 = ax2 + axy + a+b

4 y2, 2 - y}|
= R(a, a, a+b

4 ; 2n + a+b
4 )−R(a, 0, b; 2n + a+b

4 ) if 4 | a + b,

R(2a, 2a, a+b
2 ; 4n + a+b

2 ) if 4 | a + b− 2,
R(4a, 4a, a + b; 8n + a + b) if 2 - a + b.
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Proof. As x(x− 1)/2 = (1− x)(1− x− 1)/2, we see that

4tn(a, b) = |{〈x, y〉 ∈ Z2 : n = a(x2 − x)/2 + b(y2 − y)/2}|
= |{〈x, y〉 ∈ Z2 : 8n + a + b = a(2x− 1)2 + b(2y − 1)2}|
= |{〈x, y〉 ∈ Z2 : 8n + a + b = ax2 + by2, 2 - xy}|
= |{〈x, y〉 ∈ Z2 : 8n + a + b = a(2x + y)2 + by2, 2 - y}|
= |{〈x, y〉 ∈ Z2 : 8n + a + b = 4ax2 + 4axy + (a + b)y2, 2 - y}|

and so

4tn(a, b) = |{〈x, y〉 ∈ Z2 : 8n + a + b = ax2 + by2, 2 | x− y}|
− |{〈x, y〉 ∈ Z2 : 8n + a + b = ax2 + by2, 2 | x, 2 | y}|

= |{〈x, y〉 ∈ Z2 : 8n + a + b = a(2x + y)2 + by2}|
− |{〈x, y〉 ∈ Z2 : 8n + a + b = 4(ax2 + by2)}|

= R(4a, 4a, a + b; 8n + a + b)−R(4a, 0, 4b; 8n + a + b).

Thus the result follows.
Remark 2.1 For a, b, n ∈ N with 2 - ab and 8 | a + b, we have

R(a, 0, b; 2n + (a + b)/4)

= |{〈x, y〉 ∈ Z2 : 2n + (a + b)/4 = ax2 + by2, 2 | x− y}|
= |{〈x, y〉 ∈ Z2 : 2n + (a + b)/4 = a(2x + y)2 + by2}|
= |{〈x, y〉 ∈ Z2 : n + (a + b)/8 = 2(ax2 + axy + (a + b)y2/4)}|

=
{

0 if 2 - n + (a + b)/8,
R(a, a, (a + b)/4; (8n + a + b)/16) if 2 | n + (a + b)/8.

A nonsquare integer d with d ≡ 0, 1 (mod 4) is called a discriminant. Let d
be a discriminant. The conductor of d is the largest positive integer f = f(d)
such that d/f2 ≡ 0, 1 (mod 4). As usual we set w(d) = 1, 2, 4, 6 according
as d > 0, d < −4, d = −4 or d = −3. For a, b, c ∈ Z we denote the form
ax2+bxy+cy2 by (a, b, c), and the equivalence class containing the form (a, b, c)
by [a, b, c]. It is well known that [a, b, c] = [c,−b, a] = [a, 2ak+b, ak2+bk+c] for
k ∈ Z. Let H(d) be the form class group of discriminant d and h(d) = |H(d)|.
For n ∈ N and [a, b, c] ∈ H(d) we define R([a, b, c], n) as in [SW1]. Then
R([a, b, c], n) = R(a, b, c;n) = R(a,−b, c;n) for a > 0 and b2 − 4ac < 0. If
R([a, b, c], n) > 0, we say that n is represented by [a, b, c] or (a, b, c), and write
n = ax2 + bxy + cy2.

Throughout this paper let (a, b) be the greatest common divisor of integers
a and b. For a prime p and n ∈ N let ordpn be the unique nonnegative integer
α such that pα ‖ n (i.e. pα | n but pα+1 - n).
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Let d be a discriminant and n ∈ N. In view of [SW1, Lemma 4.1], we
introduce
(2.1)

δ(n, d) =
∑

m|n

( d

m

)

=





∏
( d

p )=1

(1 + ordpn) if 2 | ordqn for every prime q with (d
q ) = −1,

0 otherwise,

where in the product p runs over all distinct primes such that p | n and (d
p ) = 1.

As in [SW1] we also define

N(n, d) =
∑

K∈H(d)

R(K, n).

Lemma 2.1 ([SW1, Theorem 4.1]). Let d be a discriminant with conductor
f . Let n ∈ N and d0 = d/f2. Then

N(n, d) =





0 if (n, f2) is not a square,

m
∏
p|m

(1− 1
p (d/m2

p )) · w(d)δ( n
m2 , d0) if (n, f2) = m2 for m ∈ N,

where in the product p runs over all distinct prime divisors of m. In particular,
when (n, f) = 1 we have N(n, d) = w(d)δ(n, d0).

For d ∈ {−3,−4,−7,−12,−16,−28} it is known that h(d) = 1. Thus apply-
ing Theorem 2.1 we have

4tn(1, 1) = R(2, 2, 1; 4n + 1) = N(4n + 1,−4),

4tn(1, 3) = R(1, 1, 1; 2n + 1)−R(1, 0, 3; 2n + 1)

= N(2n + 1,−3)−N(2n + 1,−12),

4tn(1, 7) = R(1, 1, 2; 2n + 2)−R(1, 0, 7; 2n + 2)

= N(2n + 2,−7)−N(2n + 2,−28).

This together with Lemma 2.1 yields (1.2) and (1.3). By Theorem 2.1 we have

4tn(1, 15) = R(1, 1, 4; 2n + 4)−R(1, 0, 15; 2n + 4)

and

4tn(3, 5) = R(3, 3, 2; 2n + 2)−R(3, 0, 5; 2n + 2)

= R(2, 1, 2; 2n + 2)−R(3, 0, 5; 2n + 2).

As h(−15) = h(−60) = 2, applying the above and [SW1, Theorem 9.3] we
derive (1.4) and (1.5).
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Theorem 2.2. Let a, b, n ∈ N with (a, b) = 1. Let

D =





−ab if 4 | a + b,
−4ab if 2 ‖ a + b,
−16ab if 2 - a + b,

n′ =





2n + a+b
4 if 4 | a + b,

4n + a+b
2 if 2 ‖ a + b,

8n + a + b if 2 - a + b

and let f be the conductor of D. If (n′, f2) is not a square or if there is a prime
p such that

(D/f2

p

)
= −1 and 2 - ordpn

′, then tn(a, b) = 0.

Proof. By (2.1) and Lemma 2.1 we have N(n′, D) = 0 and hence R(K, n′) =
0 for any K ∈ H(D). Thus applying Theorem 2.1 we obtain the result.

For n ∈ N let Cn denote the cyclic group of order n. For m,n ∈ N let
Cm × Cn denote the direct product of Cm and Cn.

Lemma 2.2. Let d be a discriminant with conductor f . Suppose H(d) ∼=
C2×· · ·×C2 and A ∈ H(d) is not the identity. Let p be a prime such that p - f
and α ∈ N. Then

R(A, pα) =





w(d) if 2 - α, p | d and p is represented by A,
w(d)(α + 1) if 2 - α, p - d and p is represented by A,
0 otherwise.

Proof. The result follows immediately from [SW1, Theorem 5.1].

Theorem 2.3. Let a, b, n ∈ N with (a, b) = 1, ab > 1 and 4 - a + b.
(i) Suppose 2 ‖ a + b and 4n + (a + b)/2 = pα, where p is a prime such that

p - f(−4ab) and α ∈ N. If H(−4ab) ∼= C2 × · · · × C2, then

tn(a, b) =
{ α+1

2 if 2 - α and p = 2ax2 + 2axy + a+b
2 y2,

0 otherwise.

(ii) Suppose 2 - a + b and 8n + a + b = pα, where p is a prime such that
p - f(−16ab) and α ∈ N. If H(−16ab) ∼= C2 × · · · × C2, then

tn(a, b) =
{ α+1

2 if 2 - α and p = 4ax2 + 4axy + (a + b)y2,
0 otherwise.

Proof. Suppose 2 ‖ a + b. By Theorem 2.1 we have

4tn(a, b) = R(2a, 2a, (a + b)/2; 4n + (a + b)/2) = R(2a, 2a, (a + b)/2; pα).

As (a, b) = 1 we see that [2a, 2a, (a + b)/2] ∈ H(−4ab). If 1 = 2ax2 + 2axy +
a+b
2 y2 for some x, y ∈ Z, then 2 = a(2x+y)2 + by2. Hence y(2x+y) 6= 0 and so

2 > a + b. This contradicts the fact ab > 1. Thus 1 cannot be represented by
2ax2+2axy+ a+b

2 y2. Therefore [2a, 2a, (a+b)/2] is not the identity in H(−4ab).
If p = 2ax2 + 2axy + a+b

2 y2 for some x, y ∈ Z, then 2p = a(2x + y)2 + by2.
Note that (a, b) = 1. We see that p | a implies p | y and so 2p > bp2, and p | b
implies p | 2x + y and so 2p > ap2. Thus p - 4ab. Now applying Lemma 2.2 in
the case d = −4ab and A = [2a, 2a, (a + b)/2] we deduce (i). Part (ii) can be
proved similarly.
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3. Formulas for tn(1, b) when b = 2, 4, 5, 9, 13, 25, 37.

Theorem 3.1. Let n ∈ N. Then

tn(1, 2) =
1
2

∑

k|8n+3

(−2
k

)

=





1
2

∏
p≡1,3 (mod 8)

(1 + ordp(8n + 3))

if 2 | ordq(8n + 3) for every prime q ≡ 5, 7 (mod 8),
0 otherwise,

where in the product p runs over all distinct primes satisfying p | 8n + 3 and
p ≡ 1, 3 (mod 8).

Proof. By Theorem 2.1 we have tn(1, 2) = 1
4R(4, 4, 3; 8n + 3). As f(−32) =

2, [4, 4, 3] = [3,−4, 4] = [3, 2, 3] and H(−32) = {[1, 0, 8], [3, 2, 3]}, by [SW1,
Theorem 9.3] and (2.1) we have R(4, 4, 3; 8n+3) = (1− ( −1

8n+3 ))δ(8n+3,−8) =
2δ(8n + 3,−8). Now combining the above with (2.1) gives the result.

Theorem 3.2. Let n ∈ N. Then

tn(1, 4) =
1
2

∑

k|8n+5

(−1
k

)

=





1
2

∏
p≡1 (mod 4)

(1 + ordp(8n + 5))

if 2 | ordq(8n + 5) for every prime q ≡ 3 (mod 4),
0 otherwise,

where in the product p runs over all distinct primes satisfying p | 8n + 5 and
p ≡ 1 (mod 4).

Proof. By Theorem 2.1 we have tn(1, 4) = 1
4R(4, 4, 5; 8n+5). As f(−64) = 4

and H(−64) = {[1, 0, 16], [4, 4, 5]}, by [SW1, Theorem 9.3] and (2.1) we have
R(4, 4, 5; 8n+5) = (1− ( 8n+5

2 ))δ(8n+5,−4) = 2δ(8n+5,−4). Now combining
the above with (2.1) gives the result.

Theorem 3.3. Let n ∈ N and 4n + 3 = 5αn0(5 - n0). Then

tn(1, 5) =
1
4

(
1−

(n0

5

)) ∑

k|4n+3

(−5
k

)

=





1
2

∏
p≡1,3,7,9 (mod 20)

(1 + ordp(4n + 3)) if n0 ≡ ±2 (mod 5) and

2 | ordq(4n + 3) for every prime q ≡ 11, 13, 17, 19 (mod 20),
0 otherwise,

where in the product p runs over all distinct primes satisfying p | 4n + 3 and
p ≡ 1, 3, 7, 9 (mod 20).

6



Proof. By Theorem 2.1 we have tn(1, 5) = 1
4R(2, 2, 3; 4n+3). As f(−20) = 1

and H(−20) = {[1, 0, 5], [2, 2, 3]}, by [SW1, Theorem 9.3] and (2.1) we have
R(2, 2, 3; 4n + 3) = (1 − (n0

5 ))δ(4n + 3,−20). Now combining the above with
(2.1) gives the result.

Theorem 3.4. Let n ∈ N. Then

tn(1, 9) =





1
2

∑
k|4n+5

(−1
k

)
if 3 | n,

∑
k| 4n+5

9

(−1
k

)
if 9 | n− 1,

0 otherwise.

Proof. By Theorem 2.1 we have tn(1, 9) = 1
4R(2, 2, 5; 4n+5). As f(−36) = 3

and H(−36) = {[1, 0, 9], [2, 2, 5]}, by [SW1, Theorem 9.3] and (2.1) we obtain
the result.

From (2.1) and Theorem 3.4 we have:

Corollary 3.1. Let n ∈ N. Then n is represented by x(x− 1)/2 + 9y(y− 1)/2
if and only if n ≡ 0, 1, 3, 6 (mod 9) and 2 | ordq(4n + 5) for every prime
q ≡ 3 (mod 4).

Theorem 3.5. Let n ∈ N and 4n + 7 = 13αn0(13 - n0). Then

tn(1, 13) =
1
4

(
1−

(n0

13

)) ∑

k|4n+7

(−13
k

)

=





1
2

∏
(−13

p )=1

(1 + ordp(4n + 7)) if (n0
13 ) = −1 and

2 | ordq(4n + 7) for every odd prime q with (−13
q ) = −1,

0 otherwise,

where in the product p runs over all distinct primes satisfying (−13
p ) = 1 and

p | 4n + 7.

Proof. By Theorem 2.1 we have tn(1, 13) = 1
4R(2, 2, 7; 4n+7). As f(−52) = 1

and H(−52) = {[1, 0, 13], [2, 2, 7]}, by [SW1, Theorem 9.3] and (2.1) we have
R(2, 2, 7; 4n + 7) = (1 − (n0

13 ))δ(4n + 7,−52). Now combining the above with
(2.1) gives the result.

Theorem 3.6. Let n ∈ N. Then

tn(1, 25) =





1
2

∑
k|4n+13

(−1
k

)
if n ≡ 0, 1 (mod 5),

∑
k| 4n+13

25

(−1
k

)
if n ≡ 3 (mod 25),

0 otherwise.
7



Proof. By Theorem 2.1 we have tn(1, 25) = 1
4R(2, 2, 13; 4n+13). As f(−100)

= 5 and H(−100) = {[1, 0, 25], [2, 2, 13]}, by [SW1, Theorem 9.3] and (2.1) we
obtain the result.

From (2.1) and Theorem 3.6 we have:

Corollary 3.2. Let n ∈ N. Then n is represented by x(x−1)/2+25y(y−1)/2
if and only if 2 | ordq(4n + 13) for every prime q ≡ 3 (mod 4) and n satisfies
n ≡ 0, 1 (mod 5) or n ≡ 3 (mod 25).

Theorem 3.7. Let n ∈ N. Then

tn(1, 37) =
1
2

∑

k|4n+19

(−37
k

)

=





1
2

∏
(−37

p )=1

(1 + ordp(4n + 19))

if 2 | ordq(4n + 19) for every odd prime q with (−37
q ) = −1,

0 otherwise,

where p runs over all distinct primes satisfying (−37
p ) = 1 and p | 4n + 19.

Proof. By Theorem 2.1, tn(1, 37) = 1
4R(2, 2, 19; 4n+19). As f(−148) = 1 and

H(−148) = {[1, 0, 37], [2, 2, 19]}, by [SW1, Theorem 9.3] and (2.1) we obtain
the result.

4. Formulas for tn(1, b) when b = 11, 19, 23, 27, 31, 43, 67, 163.

Theorem 4.1. Let n ∈ N and b ∈ {11, 19, 43, 67, 163}. If there is a prime
p such that (p

b ) = −1 and 2 - ordp(2n + (b + 1)/4), then tn(1, b) = 0. If
2 | ordq(2n + (b + 1)/4) for every prime q with ( q

b ) = −1, then

3tn(1, b) =





∏
( p

b )=1

(1 + ordp(2n + (b + 1)/4)) if there is a prime

q = 4x2 + 2xy + b+1
4 y2 with 3 | (1 + ordq(2n + b+1

4 )),∏
( p

b )=1

(1 + ordp(2n + (b + 1)/4))

−(−1)µ
∏

p=x2+by2 6=b

(1 + ordp(2n + (b + 1)/4))

otherwise,

where
µ =

∑

p=4x2+2xy+ b+1
4 y2

ordp(2n+(b+1)/4)≡1 (mod 3)

1

and p runs over all distinct prime divisors of 2n + (b + 1)/4.
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Proof. Set b0 = (b + 1)/4. Then b0 is odd. From Theorem 2.1 we have

4tn(1, b) = R(1, 1, b0; 2n + b0)−R(1, 0, b; 2n + b0).

As H(−b) = {[1, 1, b0]} and f(−b) = 1, by Lemma 2.1 we have

R(1, 1, b0; 2n + b0) = N(2n + b0,−b) = 2
∑

k|2n+b0

(−b

k

)
.

Since H(−4b) = {[1, 0, b], [4, 2, b0], [4,−2, b0]} and f(−4b) = 2, by [SW1, Theo-
rem 10.2(i)] we have
(4.1)

(R(1, 0, b; 2n + b0)−R(4, 2, b0; 2n + b0))/2

=





0 if there is a prime p such that (p
b ) = −1 and 2 - ordp(2n + b0),

or p = 4x2 + 2xy + b0y
2 and ordp(2n + b0) ≡ 2 (mod 3),

(−1)µ
∏

p=x2+by2 6=b

(1 + ordp(2n + b0)) otherwise,

where p runs over all distinct prime divisors of 2n + b0. As

R(1, 0, b; 2n + b0) + 2R(4, 2, b0; 2n + b0) = N(2n + b0,−4b) = 2
∑

k|2n+b0

(−b

k

)
,

combining the above we see that

4tn(1, b) = 2
∑

k|2n+b0

(−b

k

)
− 1

3

{
2(R(1, 0, b; 2n + b0)−R(4, 2, b0; 2n + b0))

+ R(1, 0, b; 2n + b0) + 2R(4, 2, b0; 2n + b0)
}

= 2
∑

k|2n+b0

(−b

k

)
− 2

3

∑

k|2n+b0

(−b

k

)

− 2
3
(R(1, 0, b; 2n + b0)−R(4, 2, b0; 2n + b0)).

That is,

(4.2) 3tn(1, b) =
∑

k|2n+b0

(−b

k

)
− 1

2
(
R(1, 0, b; 2n + b0)−R(4, 2, b0; 2n + b0)

)
.

This together with (4.1) and (2.1) yields the result.
From Theorem 4.1 we have:
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Corollary 4.1. Let n ∈ N and b ∈ {11, 19, 43, 67, 163}. Then n is represented
by x(x− 1)/2 + by(y − 1)/2 if and only if 2 | ordp(2n + b+1

4 ) for every prime p

with (p
b ) = −1 and there is a prime divisor of 2n + b+1

4 represented by 4x2 +
2xy + b+1

4 y2.

For k = 1, 2, . . . , 12 let

(4.3) q
∞∏

m=1

{
(1− qkm)(1− q(24−k)m)

}
=

∞∑
n=1

φk(n)qn (|q| < 1).

In [SW2], for k = 1, 2, 3, 4, 6, 8, 12 we showed that φk(n) is a multiplicative
function of n and determined the value of φk(n). See [SW2, Theorems 4.4 and
4.5].

Putting b = 11 in (4.2) and then applying the fact R(4, 2, 3;n) = R(3,−2, 4;n)
= R(3, 2, 4;n) and [SW2, (4.1)] we deduce:

Theorem 4.2. Let n ∈ N. Then

3tn(1, 11) =
∑

k|2n+3

( k

11

)
− φ2(2n + 3).

Theorem 4.3. Let n ∈ N. Then

tn(1, 27) =





1
3

( ∑
k|2n+7

(
k
3

)− φ6(2n + 7)
)

if 3 | n,

∑
k| 2n+7

9

(
k
3

)
if n ≡ 1, 10 (mod 27),

0 otherwise,

where φ6(m) is given by (4.3) or [SW2, Theorem 4.4(iii)].

Proof. From Theorem 2.1 we have

4tn(1, 27) = R(1, 1, 7; 2n + 7)−R(1, 0, 27; 2n + 7).

As f(−27) = 3 and H(−27) = {[1, 1, 7]}, by Lemma 2.1 we have

R(1, 1, 7; 2n + 7) = N(2n + 7,−27) =





2
∑

k|2n+7

(−3
k

)
if 3 - n− 1,

6
∑

k| 2n+7
9

(−3
k

)
if 9 | n− 1,

0 if 3 ‖ n− 1.

From [SW2, Theorem 2.2 or (4.1)] we know that

R(1, 0, 27; 2n + 7)−R(4, 2, 7; 2n + 7) = 2φ6(2n + 7).
10



On the other hand, as H(−108) = {[1, 0, 27], [4, 2, 7], [4,−2, 7]} and f(−108) =
6, using Lemma 2.1 we have

R(1, 0, 27; 2n + 7) + 2R(4, 2, 7; 2n + 7)

= N(2n + 7,−108) = N(2n + 7,−27).

Thus
R(1, 0, 27; 2n + 7) =

4
3
φ6(2n + 7) +

1
3
N(2n + 7,−27).

Hence,

4tn(1, 27) = N(2n + 7,−27)−R(1, 0, 27; 2n + 7)

= N(2n + 7,−27)− 1
3
N(2n + 7,−27)− 4

3
φ6(2n + 7).

That is,

tn(1, 27) =
1
6
N(2n + 7,−27)− 1

3
φ6(2n + 7).

From [SW2, Theorem 4.4] we know that φ6(2n + 7) = 0 for n 6≡ 0 (mod 3).
Thus combining the above with (2.1) we deduce the result.

Corollary 4.2. Let n ∈ N. If 3 | n, then n is represented by x(x − 1)/2 +
27y(y − 1)/2 if and only if 2 | ordp(2n + 7) for every prime p ≡ 5 (mod 6) and
there is a prime divisor of 2n + 7 represented by 4x2 + 2xy + 7y2. If 3 - n, then
n is represented by x(x− 1)/2 + 27y(y− 1)/2 if and only if n ≡ 1, 10 (mod 27)
and 2 | ordp(2n + 7) for every prime p ≡ 5 (mod 6).

Theorem 4.4. Let n ∈ N, b ∈ {23, 31} and n + (b + 1)/8 = 2αn0(2 - n0). If
there is a prime p such that (p

b ) = −1 and 2 - ordpn0, then tn(1, b) = 0. If
2 | ordqn0 for every prime q with ( q

b ) = −1, setting b1 = (b + 1)/8 we have

3tn(1, b)−
∏

( p
b )=1

(1 + ordpn0)

=





0 if there is a prime q such that q = 2x2 + xy + b1y
2

and 3 | (1 + ordqn0),
−(−1)µ

∏
p=x2+xy+2b1y2 6=b

(1 + ordpn0)

if α ≡ 0, 1 (mod 3) and ordqn0 ≡ 0, 1 (mod 3)
for every prime q = 2x2 + xy + b1y

2,
2(−1)µ

∏
p=x2+xy+2b1y2 6=b

(1 + ordpn0)

if α ≡ 2 (mod 3) and ordqn0 ≡ 0, 1 (mod 3)
for every prime q = 2x2 + xy + b1y

2,
11



where
µ =

∑

p=2x2+xy+b1y2

ordpn0≡1 (mod 3)

1

and p runs over all distinct prime divisors of n0.

Proof. From Theorem 2.1 we have 4tn(1, b) = R(1, 1, 2b1; 2n+2b1)−R(1, 0, b; 2n+
2b1). By Remark 2.1,

R(1, 0, b; 2n + 2b1) =
{

0 if 2 - n + b1,
R(1, 1, 2b1; (n + b1)/2) if 2 | n + b1.

Thus

(4.4) 4tn(1, b) =
{

R(1, 1, 2b1; 2n + 2b1) if 2 - n + b1,

R(1, 1, 2b1; 2n + 2b1)−R(1, 1, 2b1; n+b1
2 ) if 2 | n + b1.

As H(−b) = {[1, 1, 2b1], [2, 1, b1], [2,−1, b1]} and f(−b) = 1, using Lemma 2.1
we see that for m ∈ N,

R(1, 1, 2b1;m) + 2R(2, 1, b1;m) = N(m,−b) = 2
∑

k|m

(−b

k

)
.

Set F (m) = (R(1, 1, 2b1;m)−R(2, 1, b1;m))/2. We then derive

(4.5) R(1, 1, 2b1;m) =
4
3
F (m) +

2
3

∑

k|m

(−b

k

)
.

From [SW1, Theorem 7.4(i)] we know that F (m) is a multiplicative function of
m. For any nonnegative integer r, by [SW1, Theorem 8.6(i)] we have

(4.6) F (2r) =





−1 if r ≡ 1 (mod 3),
0 if r ≡ 2 (mod 3),
1 if r ≡ 0 (mod 3).

If 2 - n+b1, as F (m) is multiplicative we have F (2n+2b1) = F (2)F (n+b1) =
−F (n + b1). We also have

∑

k|2n+2b1

(−b

k

)
=

∑

k|n+b1

{(−b

k

)
+

(−b

2k

)}
= 2

∑

k|n+b1

(k

b

)
.

Thus combining the above we obtain

4tn(1, b) = R(1, 1, 2b1; 2n + 2b1) =
4
3
F (2n + 2b1) +

2
3

∑

k|2n+2b1

(−b

k

)

= −4
3
F (n + b1) +

4
3

∑

k|n+b1

(k

b

)
.

12



Now assume 2 | n+ b1. As F (m) is multiplicative and n+ b1 = 2αn0(2 - n0),
by (4.4) and (4.5) we have

4tn(1, b)

=
4
3

(
F (2n + 2b1)− F

(n + b1

2

))
+

2
3

( ∑

k|2n+2b1

(−b

k

)
−

∑

k|n+b1
2

(−b

k

))

=
4
3
(F (2α+1n0)− F (2α−1n0)) +

2
3

∑

k|2α+1n0

k-2α−1n0

(−b

k

)

=
4
3
(F (2α+1)F (n0)− F (2α−1)F (n0)) +

2
3

∑

k|n0

{( −b

2αk

)
+

( −b

2α+1k

)}

=
4
3
(F (2α+1)− F (2α−1))F (n0) +

4
3

∑

k|n0

(−b

k

)
.

By (4.6) we have

F (2α+1)− F (2α−1) =





−1− 0 = −1 if α ≡ 0 (mod 3),
0− 1 = −1 if α ≡ 1 (mod 3),
1− (−1) = 2 if α ≡ 2 (mod 3).

Thus,

tn(1, b) =





1
3 (

∑
k|n0

(−b
k )− F (n0)) if α ≡ 0, 1 (mod 3),

1
3 (

∑
k|n0

(−b
k ) + 2F (n0)) if α ≡ 2 (mod 3).

As f(−b) = 1, combining the above with (2.1) and [SW1, Theorem 10.2(i)
(with n = n0, d = −b, I = [1, 1, 2b1], A = [2, 1, b1])] we deduce the result.

Corollary 4.3. Let n ∈ N, b ∈ {23, 31} and n + (b + 1)/8 = 2αn0 (2 - n0). If
α ≡ 0, 1 (mod 3), then n is represented by x(x− 1)/2 + by(y− 1)/2 if and only
if 2 | ordpn0 for every prime p with (p

b ) = −1 and there is a prime divisor of
n0 represented by 2x2 + xy + b+1

8 y2.

Theorem 4.5. Let n ∈ N and n + 3 = 2αn0(2 - n0). Then

tn(1, 23) =





1
3 (

∑
k|n0

(
k
23

)
+ 2φ1(n0)) if α ≡ 2 (mod 3),

1
3 (

∑
k|n0

(
k
23

)− φ1(n0)) if α ≡ 0, 1 (mod 3).

Proof. For m ∈ N let F (m) = (R(1, 1, 6;m) − R(2, 1, 3;m))/2. By [SW2,
(4.1)] we have F (m) = φ1(m). According to the proof of Theorem 4.4 we have

tn(1, 23) =





1
3 (

∑
k|n0

(−23
k )− F (n0)) if α ≡ 0, 1 (mod 3),

1
3 (

∑
k|n0

(−23
k ) + 2F (n0)) if α ≡ 2 (mod 3).
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Thus the result follows.

5. Formulas for tn(a, b) when 8n+a+b
(2,a+b) is a prime power.

Theorem 5.1. Let n ∈ N, b ∈ {6, 10, 12, 22, 28, 58} and 8n+b+1 = pα, where
p is an odd prime and α ∈ N. Let b = 2rb0(2 - b0). Then

tn(1, b) =
{ α+1

2 if 2 - α, p ≡ b + 1 (mod 8) and
(

p
b0

)
= 1,

0 otherwise.

Proof. From [SW1, Table 9.1] we see that p = 4x2 +4xy +(b+1)y2 = (2x+
y)2+by2 if and only if p ≡ b+1 (mod 8) and

(
p
b0

)
= 1. By Theorem 2.1 we have

4tn(1, b) = R(4, 4, b+1; 8n+b+1) = R(4, 4, b+1; pα). As [4, 4, b+1] ∈ H(−16b),
H(−16b) ∼= C2 × C2 (see [SW1, Proposition 11.1(ii)]) and f(−16b) ∈ {2, 8},
applying Theorem 2.3(ii) (with a = 1) and the above we obtain the result.

Theorem 5.2. Let n ∈ N, b ∈ {3, 5, 11, 29} and 8n + b + 2 = pα, where p is
an odd prime and α ∈ N. Then

tn(2, b) =
{ α+1

2 if 2 - α, p ≡ b + 2 (mod 8) and
(

p
b

)
= −1,

0 otherwise.

Proof. From [SW1, Table 9.1] we see that p = 8x2 +8xy+(b+2)y2 = 2(2x+
y)2+by2 if and only if p ≡ b+2 (mod 8) and

(
p
b

)
= −1. By Theorem 2.1 we have

4tn(2, b) = R(8, 8, b+2; 8n+b+2) = R(8, 8, b+2; pα). As [8, 8, b+2] ∈ H(−32b),
H(−32b) ∼= C2×C2 (see [SW1, Proposition 11.1(ii)]) and f(−32b) = 2, applying
Theorem 2.3(ii) (with a = 2) and the above we obtain the result.

Theorem 5.3. Let n ∈ N and 8n + 19 = pα, where p is an odd prime and
α ∈ N. Then

tn(1, 18) =





α+1
2 if 2 - α and p ≡ 19 (mod 24),

α−1
2 if 2 - α and p = 3,

0 otherwise.

Proof. From [SW1, Table 9.1] we see that p = 4x2 + 4xy + 19y2 = (2x +
y)2 +18y2 if and only if p ≡ 19 (mod 24). By Theorem 2.1 we have 4tn(1, 18) =
R(4, 4, 19; 8n + 19) = R(4, 4, 19; pα). Clearly H(−288) = {[1, 0, 72], [8, 0, 9],
[4, 4, 19], [8, 8, 11]} ∼= C2 × C2 and f(−288) = 6. If p 6= 3, then p - f(−288).
Thus applying Theorem 2.3(ii) (with a = 1 and b = 18) and the above
we obtain the result. If p = 3, then α > 3. As [4, 4, 19] = [4, 3 · 4, 32 ·
3] and [4, 4, 3] = [3,−4, 4] = [3, 2, 3], by [SW1, Theorem 5.3(ii)] we have
R(4, 4, 19; 3α) = R(3, 2, 3; 3α−2). As H(−32) = {[1, 0, 8], [3, 2, 3]} and f(−32) =
2, by the above and Lemma 2.2 we have

4tn(1, 18) = R(3, 2, 3; 3α−2) =
{

2(α− 2 + 1) if 2 - α,
0 if 2 | α.

This completes the proof.
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Theorem 5.4. Let n ∈ N and 8n + 11 = pα, where p is an odd prime and
α ∈ N. Then

tn(2, 9) =





α+1
2 if 2 - α and p ≡ 11 (mod 24),

α−1
2 if 2 - α and p = 3,

0 otherwise.

Proof. From [SW1, Table 9.1] we see that p = 8x2 + 8xy + 11y2 = 2(2x +
y)2 + 9y2 if and only if p ≡ 11 (mod 24). By Theorem 2.1 we have 4tn(2, 9) =
R(8, 8, 11; 8n + 11) = R(8, 8, 11; pα). Clearly [8, 8, 11] ∈ H(−288), H(−288) ∼=
C2×C2 and f(−288) = 6. If p 6= 3, then p - f(−288). Thus applying Theorem
2.3(ii) (with a = 2 and b = 9) and the above we obtain the result. If p = 3,
then α > 3. As [8, 8, 11] = [11,−8, 8] = [11, 3 · (−10), 32 · 3] and [11,−10, 3] =
[3, 10, 11] = [3,−2, 3], by [SW1, Theorem 5.3(ii)] we have R(8, 8, 11; 3α) =
R(3,−2, 3; 3α−2) = R(3, 2, 3; 3α−2). As H(−32) = {[1, 0, 8], [3, 2, 3]} and f(−32)
= 2, by the above and Lemma 2.2 we have

4tn(2, 9) = R(3, 2, 3; 3α−2) =
{

2(α− 2 + 1) if 2 - α,
0 if 2 | α.

This proves the theorem.

Theorem 5.5. Let n ∈ N, b ∈ {7, 11, 19, 31, 59} and 4n + (b + 3)/2 = pα,
where p is an odd prime and α ∈ N. Then

tn(3, b) =

{
α+1

2 if 2 - α, p ≡ b+3
2 (mod 12) and

(
p
b

)
= (−1)

b−3
4 ( b

3 ),
0 otherwise.

Proof. By Theorem 2.1 we have 4tn(3, b) = R(6, 6, b+3
2 ; 4n + b+3

2 ) = R(6, 6,
b+3
2 ; pα). Clearly H(−12b) = {[1, 0, 3b], [3, 0, b], [2, 2, (3b+1)/2], [6, 6, (b+3)/2] ∼=

C2 × C2 and f(−12b) = 1. It is easily seen that p = 6x2 + 6xy + b+3
2 y2 =

1
2 (3(2x + y)2 + by2) if and only if p ≡ −b (mod 3), p ≡ b+3

2 (mod 4) and
(p

b ) = (−b
p ) = ( 3

p ) = ( 3
(b+3)/2 ). Thus applying Theorem 2.3(i) (with a = 3) and

the above we obtain the result.

Theorem 5.6. Let n ∈ N and 8n + 7 = pα, where p is an odd prime and
α ∈ N. Then

tn(3, 4) =
{ α+1

2 if 2 - α and p ≡ 7 (mod 24),
0 otherwise.

Proof. By Theorem 2.1 we have 4tn(3, 4) = R(12, 12, 7; 8n+7) = R(12, 12, 7;
pα). As [12, 12, 7] = [7,−12, 12] = [7, 2, 7], H(−192) = {[1, 0, 48], [3, 0, 16], [7, 2, 7],
[4, 4, 13]} ∼= C2 × C2, f(−192) = 8, and p is represented by 7x2 + 2xy + 7y2 if
and only if p ≡ 7 (mod 24), applying Theorem 2.3(ii) (with a = 3 and b = 4)
we obtain the result.

From [SW1, Theorem 5.1] we deduce:
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Lemma 5.1. Let d be a discriminant with conductor f . Let p be a prime not
dividing f and α ∈ N. Suppose H(d) = {I, A,A2, A3} ∼= C4 with A4 = I. Then

R(A2, pα) =





w(d) if p | d, 2 - α and p is represented by A2,
w(d)(α + 1) if p - d, 2 - α and p is represented by A2,
w(d)α

2 if p - d, 4 | α and p is represented by A,
w(d)(α

2 + 1) if p - d, 4 | α− 2 and p is represented by A,
0 otherwise.

Theorem 5.7. Let n ∈ N and 8n + 9 = pα, where p is an odd prime and
α ∈ N. Then

tn(1, 8) =





(α + 1)/2 if 2 - α and p = 4x2 + 4xy + 9y2,
α/4 if 4 | α and p ≡ 3 (mod 8),
(α + 2)/4 if 4 | α− 2 and p ≡ 3 (mod 8),
0 otherwise.

Proof. From Theorem 2.1 we know that 4tn(1, 8) = R(4, 4, 9; 8n + 9) =
R(4, 4, 9; pα). As H(−128) = {[1, 0, 32], [4, 4, 9], [3, 2, 11], [3,−2, 11]} ∼= C4, we
see that p = 3x2 + 2xy + 11y2 if and only if p ≡ 3 (mod 8). Since w(−128) = 2
and f(−128) = 4, applying the above and Lemma 5.1 (with A = [3, 2, 11] and
A2 = [4, 4, 9]) we obtain the result.

Theorem 5.8. Let n ∈ N and 4n + 9 = pα, where p is an odd prime and
α ∈ N. Then

tn(1, 17) =





(α + 1)/2 if 2 - α and p = 2x2 + 2xy + 9y2,
α/4 if 4 | α and p ≡ 3, 7, 11, 23, 27, 31, 39, 63 (mod 68),
(α + 2)/4 if 4 | α− 2 and p ≡ 3, 7, 11, 23, 27, 31, 39, 63 (mod 68),
0 otherwise.

Proof. From Theorem 2.1 we know that 4tn(1, 17) = R(2, 2, 9; 4n + 9) =
R(2, 2, 9; pα). As H(−68) = {[1, 0, 17], [2, 2, 9], [3, 2, 6], [3,−2, 6]} ∼= C4, we see
that p = 3x2 + 2xy + 6y2 if and only if (−1

p ) = ( 17
p ) = −1. Since w(−68) = 2,

f(−68) = 1 and (17
p ) = ( p

17 ) = −1 if and only if p ≡ ±3,±5,±6,±7 (mod 17),
applying the above and Lemma 5.1 (with A = [3, 2, 6] and A2 = [2, 2, 9]) we
obtain the result.

6. Criteria for R(K, n) > 0 (K ∈ H(d)) and tn(a, b) > 0.
Let d be a discriminant, a, b, c ∈ Z and b2 − 4ac = d. For n ∈ N we

define R′([a, b, c], n) to be the number of proper primary representations of
n = ax2 + bxy + cy2 as in [SW1, Definition 3.2]. For a > 0 and d < 0, we have

R′([a, b, c], n) = |{〈x, y〉 ∈ Z2 : n = ax2 + bxy + cy2, (x, y) = 1}|.
From [SW1, Lemma 5.2 and Theorem 5.2] we deduce the following lemma.
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Lemma 6.1. Let d be a discriminant with conductor f . Let K ∈ H(d) and
t ∈ N. Let p be a prime such that p - f .

(i) If (d
p ) = −1, then R′(K, pt) = 0.

(ii) If (d
p ) = 0, then p is represented by unique A ∈ H(d) and we have

R′(K, pt) =
{

w(d) if t = 1 and K = A,
0 otherwise.

(iii) If (d
p ) = 1, then p is represented by some A ∈ H(d) and we have

R′(K, pt) =





0 if K 6= At, A−t,
w(d) if K ∈ {At, A−t} and At 6= A−t,
2w(d) if K = At = A−t.

Lemma 6.2 ([SW1, Theorem 7.1]). Let d be a discriminant. If n1, n2,
. . . , nr(r > 2) are pairwise prime positive integers and K ∈ H(d), then

R(K, n1n2 · · ·nr) =
1

w(d)r−1

∑

K1,... ,Kr∈H(d)
K1K2···Kr=K

R(K1, n1)R(K2, n2) · · ·R(Kr, nr)

and

R′(K, n1n2 · · ·nr) =
1

w(d)r−1

∑

K1,... ,Kr∈H(d)
K1K2···Kr=K

R′(K1, n1)R′(K2, n2) · · ·R′(Kr, nr).

Theorem 6.1. Let d be a discriminant with conductor f . Let K ∈ H(d)
and n ∈ N with n > 1 and (n, f) = 1. Then R′(K, n) > 0 if and only if
n = pα1

1 · · · pαs
s ps+1 · · · pr and K = Pα1

1 · · ·Pαs
s Ps+1 · · ·Pr, where p1, . . . , pr are

distinct primes such that
(

d
pi

)
= 1 or 0 according as i 6 s or i > s, and Pi is

a class in H(d) representing pi. Moreover, if the above conditions hold and we
arrange the order of P1, . . . , Ps so that

P1 6= P−1
1 , . . . , Pk 6= P−1

k , Pk+1 = P−1
k+1, . . . , Ps = P−1

s ,

then
R′(K, n) = 2s−kw(d)ε(K, n),

where
ε(K, n) =

∣∣∣
{

J ⊆ {1, 2, . . . , k} :
∏

j∈J

P
2αj

j = I
}∣∣∣

and I is the identity in H(d).
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Proof. Let p be a prime divisor of n and pα ‖ n. If (d
p ) = −1 or if (d

p ) = 0
and α > 2, by Lemma 6.1 we have R′(M, pα) = 0 for any M ∈ H(d). Thus,
using Lemma 6.2 we see that

R′(K, n) =
1

w(d)

∑

K1,K2∈H(d)
K1K2=K

R′(K1, p
α)R′(K2, n/pα) = 0.

Now assume n = pα1
1 · · · pαs

s ps+1 · · · pr (α1, . . . , αs ∈ N), where p1, . . . , pr are
distinct primes such that

(
d
p1

)
= · · · = (

d
ps

)
= 1 and

(
d

ps+1

)
= · · · = (

d
pr

)
= 0.

For later convenience we set αs+1 = · · · = αr = 1. Applying Lemma 6.2 we see
that

R′(K, n) =
1

w(d)r−1

∑

K1,... ,Kr∈H(d)
K1···Kr=K

R′(K1, p
α1
1 ) · · ·R′(Kr, p

αr
r ).

Thus R′(K, n) > 0 if and only if there exist K1, . . . ,Kr ∈ H(d) such that
K1 · · ·Kr = K and R′(Ki, p

αi
i ) > 0 (i = 1, . . . , r). Hence applying Lemma 6.1

we see that R′(K, n) > 0 if and only if there exist K1, . . . ,Kr ∈ H(d) such that
K1 · · ·Kr = K and Ki = Pαi

i (i = 1, . . . , r), where Pi ∈ H(d) can represent pi

(i = 1, . . . , r).
Now suppose K = Pα1

1 · · ·Pαs
s Ps+1 · · ·Pr, where P1, . . . , Pr can represent

p1, . . . , pr respectively, and

P1 6= P−1
1 , . . . , Pk 6= P−1

k , Pk+1 = P−1
k+1, . . . , Ps = P−1

s .

From Lemma 6.1 we know that

R′(Pαi
i , pαi

i ) =
{

w(d) if 1 6 i 6 k or s < i 6 r,
2w(d) if k < i 6 s.

Thus
R′(Pα1

1 , pα1
1 ) · · ·R′(Pαr

r , pαr
r ) = 2s−kw(d)r.

Since Pj = P−1
j for k < j 6 r, by the above and Lemma 6.2 we have

R′(K, n)w(d)r−1 =
∑

K1,... ,Kr∈H(d)
K1···Kr=K

R′(K1, p
α1
1 ) · · ·R′(Kr, p

αr
r )

=
∑

K1···Kr=K

K1=P
±α1
1 ,... ,Kk=P

±αk
k

Kk+1=P
αk+1
k+1 ,... ,Kr=P αr

r

R′(K1, p
α1
1 ) · · ·R′(Kr, p

αr
r )

=
∑

K1···Kr=K

K1=P
±α1
1 ,... ,Kk=P

±αk
k

Kk+1=P
αk+1
k+1 ,... ,Kr=P αr

r

2s−kw(d)r

=
∑

K1=P
±α1
1 ,... ,Kk=P

±αk
k

K1···Kk=P
α1
1 ···P αk

k

2s−kw(d)r.

18



Thus

R′(K, n) = 2s−kw(d)
∣∣{〈ε1, . . . , εk〉 : ε1, . . . , εk ∈ {1,−1},
P ε1α1

1 · · ·P εkαk

k = Pα1
1 · · ·Pαk

k

}∣∣
= 2s−kw(d)

∣∣{J ⊆ {1, 2, . . . , k} :
∏

j∈J

P
−αj

j =
∏

j∈J

P
αj

j

}∣∣

= 2s−kw(d)ε(K,n).

This completes the proof.

Corollary 6.1. Let d be a discriminant with conductor f . Let n ∈ N with
(n, f) = 1. Suppose n = pα1

1 · · · pαs
s ps+1 · · · pr (α1, . . . , αs ∈ N), where p1, . . . , pr

are distinct primes such that
(

d
p1

)
= · · · = (

d
ps

)
= 1 and

(
d

ps+1

)
= · · · = (

d
pr

)
=

0. Assume that pi is represented by Pi ∈ H(d) (i = 1, . . . , s). Let I be the
identity in H(d) and k = |{i ∈ {1, 2, . . . , s} : P 2

i 6= I}|. Then there are at most
2k classes K ∈ H(d) such that R′(K,n) > 0.

As ε(K, n) 6 2k, by Theorem 6.1 and [SW1, (5.1)] we have:

Corollary 6.2. Let d be a discriminant with conductor f . Let K ∈ H(d) and
n ∈ N with (n, f) = 1. Then R′(K, n) 6 2sw(d), where s is the number of
distinct prime divisors p of n such that (d

p ) = 1.

From Theorem 6.1 we deduce the following result.

Theorem 6.2. Let d be a discriminant such that H(d) is cyclic with generator
A. Let f be the conductor of d. Let h(d) = h ≡ 1 (mod 2) and α1, . . . , αs ∈ N.
Let p1, . . . , pr be distinct primes such that ( d

p1
) = · · · = ( d

ps
) = 1, ps+1 | d,

ps+1 - f, . . . , pr | d, pr - f . Suppose that pi is represented by Aci and that for
i ∈ {1, 2, . . . , s}, pi is not represented by the identity in H(d) (that is h - ci) if
and only if i 6 k. Then

R′(Ac1α1+···+ckαk , pα1
1 · · · pαs

s ps+1 · · · pr)

= 2s−kw(d)
∣∣∣
{

J ⊆ {1, 2, . . . , k} :
∑

j∈J

cjαj ≡ 0 (mod h)
}∣∣∣.

Lemma 6.3. Let d be a discriminant with conductor f . Let p be a prime such
that p - f . Let K ∈ H(d) and t ∈ N. Let I be the identity in H(d).

(i) If 2 | t, then

R(K, pt) > 0 ⇐⇒
{

K = I if (d
p ) = 0,−1,

K = Aβ for some β ∈ {0,±2, . . . ,±t} if (d
p ) = 1,

where A ∈ H(d) is chosen so that p is represented by A.
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(ii) If 2 - t, then

R(K, pt) > 0 ⇐⇒
{

K = A if (d
p ) = 0,

K = Aβ for some β ∈ {±1,±3, . . . ,±t}, if (d
p ) = 1,

where A ∈ H(d) is chosen so that p is represented by A.

Proof. If (d
p ) = 0,−1, the result follows from [SW1, Theorem 5.1]. Now we

assume (d
p ) = 1 so that p is represented by some class A ∈ H(d). From [SW1,

Lemma 5.1] we have R(K, pt) =
∑[t/2]

i=0 R′(K, pt−2i), where [·] is the greatest
integer function. Thus R(K, pt) > 0 if and only if for some i ∈ {0, 1, . . . , [t/2]}
we have R′(K, pt−2i) > 0. This together with Lemma 6.1(iii) yields the result
in the case (d

p ) = 1.

Theorem 6.3. Let d be a discriminant with conductor f . Let K ∈ H(d)
and n ∈ N with n > 1 and (n, f) = 1. Then R(K, n) > 0 if and only if
n = pα1

1 · · · pαr
r and K = P β1

1 · · ·P βs
s Ps+1 · · ·Pm (m ≤ r), where α1, . . . , αr ∈ N

and p1, . . . , pr are distinct primes such that

(6.1)

( d

p1

)
= · · · =

( d

ps

)
= 1, pi | d, 2 - αi for s < i 6 m,

( d

pi

)
∈ {0,−1}, 2 | αi for m < i 6 r,

Pi ∈ H(d) is chosen so that pi is represented by Pi (1 6 i 6 m) and βi ∈
{±αi,±(αi − 2), . . . ,±(αi − 2[αi/2])} for 1 6 i 6 s.

Proof. Let p be a prime divisor of n and pα ‖ n. If (d
p ) = −1 and 2 - α, by

Lemma 6.3 we have R(M, pα) = 0 for any M ∈ H(d). Thus, using Lemma 6.2
we see that

R(K, n) =
1

w(d)

∑

K1,K2∈H(d)
K1K2=K

R(K1, p
α)R(K2, n/pα) = 0.

Now assume n = pα1
1 · · · pαr

r , where p1, . . . , pr are distinct primes such that
(6.1) holds. For i = 1, . . . ,m suppose that pi is represented by Pi ∈ H(d). By
Lemma 6.2 we have

R(K,n) =
1

w(d)r−1

∑

K1,... ,Kr∈H(d)
K1···Kr=K

R(K1, p
α1
1 ) · · ·R(Kr, p

αr
r ).

Thus R(K, n) > 0 if and only if there are K1, . . . ,Kr ∈ H(d) such that
K1 · · ·Kr = K and R(Ki, p

αi
i ) > 0 for i = 1, . . . , r.
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For i ∈ {m + 1, . . . , r}, from Lemma 6.3(i) we know that R(Ki, p
αi
i ) > 0

if and only if Ki is the identity in H(d). For i ∈ {s + 1, . . . ,m}, by Lemma
6.3 we see that R(Ki, p

αi
i ) > 0 if and only if Ki = Pi. Thus R(K, n) > 0 if

and only if there are K1, . . . ,Ks ∈ H(d) such that K1 · · ·KsPs+1 · · ·Pm = K
and R(Ki, p

αi
i ) > 0 for every i ∈ {1, . . . , s}. By appealing to Lemma 6.3

again we see that R(K, n) > 0 if and only if K = P β1
1 · · ·P βs

s Ps+1 · · ·Pm and
βi ∈ {±αi,±(αi − 2), . . . ,±(αi − 2[αi/2])} for i = 1, . . . , s. This proves the
theorem.

From Theorem 6.3 and [SW1, (5.1)] we deduce:

Theorem 6.4. Let d be a discriminant with conductor f . Let K ∈ H(d) and
n ∈ N with (n, f) = 1. Then there are at most

∏
( d

p )=1(1 + ordp n) classes
K ∈ H(d) such that R(K, n) > 0, where in the product p runs over all distinct
prime divisors of n satisfying (d

p ) = 1.

Let a, b, n ∈ N with (a, b) = 1 and 4 - a + b. By Theorem 2.1 we have

4tn(a, b) =
{

R([2a, 2a, a+b
2 ], 4n + a+b

2 ) if 2 ‖ a + b,
R([4a, 4a, a + b], 8n + a + b) if 2 - a + b.

Thus we may use Lemma 6.3 and Theorem 6.3 to give a criterion for tn(a, b) > 0
provided (8n+a+b

(2,a+b) , f(−4ab)) = 1.
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