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ABSTRACT. Let N be the set of positive integers. For b,n € N let ¢, (1, b) denote
the number of representations (x,y) (z,y € N) of n = z(x —1)/2+ by(y — 1)/2.
In the paper we mainly obtain explicit formulas for ¢,(1,b) in the cases b =
2,4,5,9,11,13,19,23,25,27,31,37,43,67,163.
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1. Introduction.
Let Z and N be the set of integers and the set of positive integers respectively.
For a,b,n € N let

tn(a,b) = [{{z,y) : n=ax(z—1)/2+by(y —1)/2, z,y € N}|
and

P(g) = ¢"F D2 (g < 1).
k=1

Then clearly

(1.1) P(g)W(¢") =14+ tula,b)g" (g < 1).
n=1

Since Legendre it is known that

(1.2) (L) = Y (-1)7.

k|4n+1

Ramanujan (see [B, pp. 302-303]) found that if |¢| < 1, then
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and
5 7 11

o6y 4 4 @ 4
Q¢(Q)¢(Q)_1_q2 1—q10+1—ql4 1—q22+ ’

In 1999, K.S. Williams [W] proved the above two Ramanujan identities by using
the theory of binary quadratic forms. By (1.1), the above Ramanujan identities
are equivalent to

(1.3) ta(1,3) = Y (g) and t,(1,7)= > (g)

k|2n+1 k|n+1,24k

where (%) is the Legendre-Jacobi-Kronecker symbol. In 2006 the author and

K.S. Williams [SW2, p. 369] showed that if n 4+ 1 = 3%ng (3 1 ng), then

(1.4) a(3,5) = (_;)a(% > (L)
kln+1, 2tk

if n+2=3%g (31np), then

(1.5) 1a(1,15) = 2= (_;)a(%) 3 (f—5>
k|n+2, 21k

In the paper we use the results in [SW1] to obtain the formulae for ¢,(1,b)
in the cases b = 2,4,5,9,11,13,19, 23, 25,27,31,37,43,67, 163. Our method is
based on the connection between ¢, (a,b) and the number of representations of
8n+a+b by certain binary quadratic forms, whose corresponding class number
of discriminant is 1,2 or 3. We also obtain some explicit formulas for ¢, (a,b)
when 8n + a + b or 4n + (a + b)/2 is an odd prime power, and give a general
criterion for ¢, (a,b) > 0.

2. General formulas for t,(a,b).
Let Z? = {{x,y) : #,y € Z}. For n € N and a,b,c € Z with a,c > 0 and
b? — 4ac < 0 let

R(a,b,c;n) = |{{z,y) € Z*: n = ax®+ bxy + cy*}|.
Theorem 2.1. Let a,b,n € N. Then

4t,(a,b) = |{{z,y) € Z* : 8n+a+b=azx® +by* 21{zy}|
{(z,y) € Z*: 2n+ 4P = az® + awy + L2y, 24y}
:R(a,a,“Ter;Qn—kaTer)—R(a,O,b;2n+aT+b) if4]a+0,
R(2a,2a, 25t 4n + 2£b) ifd|a+b—2,

R(4a,4a,a + b;8n 4+ a + b) if 24a+b.
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Proof. As z(z —1)/2=(1—-x)(1 —x —1)/2, we see that

4ty (a,b) = [{(z,y) € Z°: n=a(@® —2)/2+b(y* —y)/2}|
= {(z,y) €Z*: 8n+a+b=a(2x—1)*+0b2y—1)%}
= {(z,y) € Z*: 8n+a+b=ax®+by? 212y}
= {(z,y) €Z*: 8n+a+b=al2x+y)*+by? 21y}
{(z, )

€Z%: 8n+a+b=4az* + daxy + (a + b)y*, 2t y}|
and so

4t,(a,b) = [{{z,y) € Z*: 8n+a+b=ax®+by* 2|2 —y}|
—{{(x,y) €Z*: Sn+a+b=azx*+by? 2]|z,2|y}
={{z,y) €Z*: 8n+a+b=a2z+y)*+by*}|
—{{(z,y) € Z*: 8n+a+b=4(ax®+ by*)}|
= R(4a,4a,a + b;8n + a+ b) — R(4a,0,4b;8n + a + b).

<

Thus the result follows.
Remark 2.1 For a,b,n € N with 2+ ab and 8 | a + b, we have

R(a,0,b;2n + (a + b)/4)

= {{z,y) €Z*: 2n+ (a+b)/4 = ax® +by?, 2|z — y}|

= {(z,y) € Z*: 2n+ (a+b)/4 = a(2z +y)* + by}

= [{{z,y) € Z*: n+ (a+0)/8=2(az® + azxy + (a +b)y*/4)}|

:{0 if 2¢tn+ (a+b)/8,
R(a,a,(a+b)/4;(8n+a+b)/16) if2|n+ (a+b)/8.

A nonsquare integer d with d = 0,1 (mod 4) is called a discriminant. Let d
be a discriminant. The conductor of d is the largest positive integer f = f(d)
such that d/f? = 0,1 (mod 4). As usual we set w(d) = 1,2,4,6 according
as d > 0,d < —4,d = —4 or d = —3. For a,b,c € Z we denote the form
ax?+bry+cy? by (a, b, c), and the equivalence class containing the form (a, b, c)
by [a, b, c]. Tt is well known that [a, b, ¢] = [c, —b, a] = [a, 2ak+b, ak?® +bk+c] for
k € Z. Let H(d) be the form class group of discriminant d and h(d) = |H(d)|.
For n € N and [a,b,c] € H(d) we define R([a,b,c|,n) as in [SW1]. Then
R([a,b,c],n) = R(a,b,c;n) = R(a,—b,c;n) for a > 0 and b?> — dac < 0. If
R([a,b,c],n) > 0, we say that n is represented by [a, b, c] or (a,b,c), and write
n = ax? + bxy + cy?.

Throughout this paper let (a,b) be the greatest common divisor of integers
a and b. For a prime p and n € N let ord,n be the unique nonnegative integer
a such that p® || n (i.e. p® | n but p**! {n).
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Let d be a discriminant and n € N. In view of [SW1, Lemma 4.1], we
introduce

(2.1)
d
o) =2 ()
I[I (1+ord,n) if2|ord,n for every prime ¢ with (g) = -1,
=< (§)=1
0 otherwise,

where in the product p runs over all distinct primes such that p | n and (%) =1.
As in [SW1] we also define

N(n,d)= >  R(K,n).
KeH(d)

Lemma 2.1 ([SW1, Theorem 4.1]). Let d be a discriminant with conductor
f. Letn € N and dy = d/f%. Then
0 if (n, f?) is not a square,

N d) =4 m TT(1 = 2(42%)) - w(d)b (2, do) if (n, f2) =m? form €N,

p

plm

where in the product p runs over all distinct prime divisors of m. In particular,

when (n, f) =1 we have N(n,d) = w(d)d(n,dyp).
Ford e {—3,—4,—7,—-12,—16,—28} it is known that h(d) = 1. Thus apply-
ing Theorem 2.1 we have
At,(1,1) = R(2,2,1;4n + 1) = N(dn + 1, —4),
4t,(1,3) = R(1,1,1;2n + 1) — R(1,0,3;2n + 1)
N(2n+1,-3) — N(2n + 1, -12),
At (1,7) = R(1,1,2;2n + 2) — R(1,0,7;2n + 2)
N(2n+2,—-7) — N(2n + 2, —28).

This together with Lemma 2.1 yields (1.2) and (1.3). By Theorem 2.1 we have
4t,(1,15) = R(1,1,4;2n + 4) — R(1,0,15; 2n + 4)
and

4t,(3,5) = R(3,3,2:2n + 2) — R(3,0,5;2n + 2)
= R(2,1,2;2n 4+ 2) — R(3,0,5;2n + 2).
As h(—15) = h(—60) = 2, applying the above and [SW1, Theorem 9.3] we

derive (1.4) and (1.5).
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Theorem 2.2. Let a,b,n € N with (a,b) = 1. Let

—ab  if4|a+b, 2n + 4L if4|a+b,
D={ —4ab if2] a+b, n'=q dn+ 9L if2 | a+b,
—16ab if2ta+b, 8n+a+b if2ta+b

and let f be the conductor of D. If (n', f?) is not a square or if there is a prime
2
p such that (%) = —1 and 2 { ord,n/, then t,(a,b) = 0.

Proof. By (2.1) and Lemma 2.1 we have N(n', D) = 0 and hence R(K,n) =
0 for any K € H(D). Thus applying Theorem 2.1 we obtain the result.

For n € N let (), denote the cyclic group of order n. For m,n € N let
Cy, x C), denote the direct product of C,, and C,,.

&)

Lemma 2.2. Let d be a discriminant with conductor f. Suppose H(d) =
Cyx---xCy and A € H(d) is not the identity. Let p be a prime such thatpt f
and o € N. Then

w(d) if 21 «, p| d and p is represented by A,
R(A,p%) =< w(d)(a+1) if21a, ptd and p is represented by A,
0 otherunse.

Proof. The result follows immediately from [SW1, Theorem 5.1].

Theorem 2.3. Let a,b,n € N with (a,b) =1, ab>1 and 4t a+b.
(1) Suppose 2 || a+b and 4n+ (a+b)/2 = p®, where p is a prime such that
pt f(—4ab) and o € N. If H(—4ab) =2 Cy X --- x Csq, then

a+1 . 2 a+b, 2
f= if 21« and p = 2ax” + 2axy + 2y”,
tn(a, b) { 2 Jf Yy 2 Yy

0 otherwise.
(ii) Suppose 2 1 a + b and 8n + a + b = p®, where p is a prime such that
p1 f(—16ab) and o € N. If H(—16ab) = Cy x - -- x Cq, then
tn(a,b):{ otl if 2t a and p = 4az® + dazy + (a + b)y?,
0 otherwise.

Proof. Suppose 2 || a + b. By Theorem 2.1 we have
4t,(a,b) = R(2a,2a,(a +b)/2;4n + (a +b)/2) = R(2a,2a, (a + b)/2;p%).

As (a,b) = 1 we see that [2a,2a, (a + b)/2] € H(—4ab). If 1 = 2az? + 2azy +
aTeryz for some x,y € Z, then 2 = a(2z +y)? +by?. Hence y(2x +1vy) # 0 and so
2 > a +b. This contradicts the fact ab > 1. Thus 1 cannot be represented by
2a2? +2azy+ 24Ly?. Therefore [2a,2a, (a+b)/2] is not the identity in H(—4ab).
If p = 2az? + 2azy + %Py? for some z,y € Z, then 2p = a(2z + y)? + by>.
Note that (a,b) = 1. We see that p | a implies p | y and so 2p > bp?, and p | b
implies p | 2z + y and so 2p > ap?. Thus p { 4ab. Now applying Lemma 2.2 in
the case d = —4ab and A = [2a,2a, (a + b)/2] we deduce (i). Part (ii) can be
proved similarly.
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3. Formulas for ¢,,(1,b) when b=2,4,5,9,13, 25, 37.
Theorem 3.1. Letn € N. Then

w2 =5 3 ()

k|8n+3

i I (14 ord,(8n + 3))
p=1,3 (mod 8)

- if 2| ordy(8n + 3) for every prime ¢ = 5,7 (mod 8),

0 otherwise,

where in the product p runs over all distinct primes satisfying p | 8n + 3 and
p=1,3 (mod 8).

Proof. By Theorem 2.1 we have ¢,,(1,2) = ;R(4,
2, [4,4,3] = [3,-4,4] = [3,2,3] and H(-32) = {[1,
Theorem 9.3] and (2.1) we have R(4,4,3;8n+3) = (
26(8n + 3, —8). Now combining the above with (2.1

Theorem 3.2. Let n € N. Then

=13 (3

k|8n+5

3 [T (1+ord,(8n+5))
p=1 (mod 4)

- if 2 | ordy(8n + 5) for every prime ¢ = 3 (mod 4),

0 otherwise,

4,3; 8n—|—3) As f(—32) =
1,0, ]7[ ad) ]}7 by [SWL

1— (8n+3))5(8n+3, —8) =
) gives the result.

where in the product p runs over all distinct primes satisfying p | 8n + 5 and
p=1 (mod 4).

Proof. By Theorem 2.1 we have t,,(1,4) = 1 R(4,4,5;8n+5). As f(—64) = 4
and H(—64) = {[1,0,16],[4,4,5]}, by [SW1, Theorem 9.3] and (2.1) we have
R(4,4,5;8n45) = (1 — (¥%£2))6(8n+5, —4) = 2§(8n+5, —4). Now combining
the above with (2.1) gives the result.

Theorem 3.3. Letn € N and 4n+ 3 = 5%ng(51ng). Then

1 o -9
(8 =30-(5)) X (F)
n1:9) 4 g k|;3 k
1 I (I1+ordy,(4n+3)) ifng ==£2 (mod 5) and
p=1,3,7,9 (mod 20)
- 2 | ord,(4n + 3) for every prime ¢ = 11,13,17,19 (mod 20),

0 otherwise,
where in the product p runs over all distinct primes satisfying p | 4n + 3 and

p=1,3,7,9 (mod 20).
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Proof. By Theorem 2.1 we have t,,(1,5) = 1 R(2,2,3;4n+3). As f(—20) = 1
and H(—20) = {[1,0,5],[2,2,3]}, by [SW1, Theorem 9.3] and (2.1) we have
R(2,2,3;4n 4 3) = (1 — ())d(4n + 3,—20). Now combining the above with
(2.1) gives the result.

Theorem 3.4. Let n € N. Then
5 > (F) if3]n,

k|4n+5
k|4n9+5
0 otherwise.

Proof. By Theorem 2.1 we have t,,(1,9) = 1 R(2,2,5;4n+5). As f(—36) = 3
and H(—-36) = {[1,0,9],[2,2,5]}, by [SW1, Theorem 9.3] and (2.1) we obtain
the result.

From (2.1) and Theorem 3.4 we have:

Corollary 3.1. Letn € N. Then n is represented by x(x —1)/24+9y(y — 1)/2
if and only if n = 0,1,3,6 (mod 9) and 2 | ord,(4n + 5) for every prime
g =3 (mod 4).

Theorem 3.5. Letn € N and 4n+ 7 = 13%ng(13 1 ng). Then

L - Lo (1)) ¥ (28

k|4n+7
%( H) (1+ordy(dn+7)) if () = —1 and
=13)=1
- 2 | ordy(4n +7) for every odd prime q with (_Tl?’) = —1,
0 otherwise,

where in the product p runs over all distinct primes satisfying (_713) =1 and
pldn+T7.

Proof. By Theorem 2.1 we have t,,(1,13) = 1 R(2,2,7;4n+7). As f(—52) =1
and H(-52) = {[1,0,13],[2,2,7]}, by [SW1, Theorem 9.3] and (2.1) we have
R(2,2,7;4n 4+ 7) = (1 — (73))0(4n + 7,—-52). Now combining the above with
(2.1) gives the result.

Theorem 3.6. Let n € N. Then
> (F) ifn=0,1 (mod 5),

k|4n+13
tn(1,25) = > (F)  ifn=3 (mod 25),
k|4n2—g13
0 otherwise.



Proof. By Theorem 2.1 we have ¢,,(1,25) = 2 R(2,2,13;4n+13). As f(—100)
= 5 and H(—100) = {[1,0,25],[2,2,13]}, by [SW1, Theorem 9.3] and (2.1) we
obtain the result.

From (2.1) and Theorem 3.6 we have:

Corollary 3.2. Letn € N. Then n is represented by x(x—1)/2+25y(y—1)/2
if and only if 2 | ordy(4n + 13) for every prime ¢ = 3 (mod 4) and n satisfies
n=0,1 (mod 5) orn =3 (mod 25).

Theorem 3.7. Letn € N. Then

w4 ()

k|4n+19
1 TI (1+ordy(4n+19))

(=27)=1
if 2| ordy(4n + 19) for every odd prime q with (_737) = -1,

0  otherwise,

where p runs over all distinct primes satisfying (_737) =1 andp|4n+ 19.

Proof. By Theorem 2.1, ¢,,(1,37) = iR(2, 2,19;4n+19). As f(—148) = 1 and
H(-148) = {[1,0,37],[2,2,19]}, by [SW1, Theorem 9.3] and (2.1) we obtain
the result.

4. Formulas for ¢,(1,b) when b = 11,19, 23,27,31,43,67, 163.

Theorem 4.1. Let n € N and b € {11,19,43,67,163}. If there is a prime
p such that (¥) = —1 and 2 { ord,(2n + (b + 1)/4), then t,(1,b) = 0. If
2 | ordy(2n 4 (b+1)/4) for every prime q with ($) = —1, then

([ (AT+ord,(2n+ (b+1)/4)) if there is a prime
(3)=1

q = 422 + 2y + Ly with 3 | (1+ ordg(2n + 1)),

3tn(1,b) = (21)11(1 +ord,(2n + (b +1)/4))
—(=1)~ [T (1+4ord,(2n+ (b+1)/4))
p=x2+by?#b
( otherwise,

where

w= > 1

p:4x2+2my+%y2
ord, (2n+(b+1)/4)=1 (mod 3)

and p runs over all distinct prime divisors of 2n + (b+ 1) /4.
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Proof. Set by = (b+ 1)/4. Then by is odd. From Theorem 2.1 we have
dt,(1,b) = R(1,1,bo; 2n + by) — R(1,0,b; 2n + bo).

As H(-b) ={[1,1,b9]} and f(—b) =1, by Lemma 2.1 we have

—b
R(1,1,bo; 2n + bg) = N (2n + by, —b) =2 Y (?>
k|2n+bo

Since H(—4b) = {[1,0,], [4,2, bo], [4, —2,bo]} and f(—4b) = 2, by [SW1, Theo-
rem 10.2(i)] we have
(4.1)
(R(1,0,b;2n 4 bo) — R(4,2,bo;2n + bg))/2
0 if there is a prime p such that (¥) = —1 and 2 { ord,(2n + by),
_ or p = 4x? + 2zy + boy? and ord,(2n + by) = 2 (mod 3),

(=1)* 211 2;éb(l +ord,(2n +by)) otherwise,
p=x<+by

where p runs over all distinct prime divisors of 2n + by. As

b
R(1,0,b;2n + bo) + 2R(4,2, by 2n + by) = N(2n + by, —4b) =2 Y (— ,
k:|2n+b0
combining the above we see that
1
dtn(1,0) =2 3 <?> - g{2(3(1,0,1), 2 + bo) — R(4,2, bo; 21 + bp))
k|2n—|—b0
+ R(1,0,b; 2n + bo) + 2R(4,2, bo: 2n + bo)}
by 2 b
=23 ()5 X (%)
k:|2n—|—b0 k|2n+b0
2
That is,
(4.2) 3t.(Lb) = > (_—b) ~ LR, 0,8:20 4 bo) — R(4,2, b3 20 + b)),
)] k 2 ) ) ) )] ) )

k‘|2n+b0

This together with (4.1) and (2.1) yields the result.
From Theorem 4.1 we have:
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Corollary 4.1. Letn € N and b € {11,19,43,67,163}. Then n is represented
by x(x —1)/2+by(y — 1)/2 if and only if 2 | ord,(2n + bjLTl) for every prime p
with (¥) = —1 and there is a prime divisor of 2n + bTTl represented by 4x? +
2zy + Hy2.

For k=1,2,...,12 let
43) g [ {a =" =g} = "g(n)g" (lgl <1).
m=1 n=1

In [SW2], for k = 1,2,3,4,6,8,12 we showed that ¢x(n) is a multiplicative
function of n and determined the value of ¢x(n). See [SW2, Theorems 4.4 and
4.5].

Putting b = 11 in (4.2) and then applying the fact R(4,2,3;n) = R(3,—2,4;n)
= R(3,2,4;n) and [SW2, (4.1)] we deduce:

Theorem 4.2. Let n € N. Then

Btu(1,11) = > (f—l)—¢2(2n+3).

k|2n+3

Theorem 4.3. Let n € N. Then
s X2 (5)—os2n+7) if3|n,

k|2n+T7
tn(1,27) = > (%) if n=1,10 (mod 27),
b2
0 otherwise,

where ¢g(m) is given by (4.3) or [SW2, Theorem 4.4(iii)).

Proof. From Theorem 2.1 we have
4t,(1,27) = R(1,1,7;2n+ 7) — R(1,0,27;2n + 7).
As f(—27) =3 and H(-27) ={[1,1,7]}, by Lemma 2.1 we have
2 Y (F) if3tn-—1,

k|2n+7

R(1,1,7;2n+7)=N(2n+7,-27) =4 6 > (32) if9|n—1,
k|25

0 if 3] n—1.

From [SW2, Theorem 2.2 or (4.1)] we know that

R(1,0,27;2n+7) — R(4,2,7;2n+ 7) = 2¢6(2n + 7).
10



On the other hand, as H(—108) = {[1,0,27],[4,2,7],[4,—2,7]} and f(—108) =

6, using Lemma 2.1 we have

R(1,0,27;2n 4 7) + 2R(4,2,7;2n + 7)
= N(2n +7,-108) = N(2n + 7, —27).

Thus
R(1,0,27;2n+7) = §¢6(2n +7)+ %N(2n +7,-27).
Hence,
4t,(1,27) = N(2n + 7,—-27) — R(1,0,27;2n + 7)
=N(2n+7,-27) — %N(Zn +7,-27) — §¢6(2n + 7).
That is,

1 1
ta(1,27) = N (2 +7,-27) = 5(20+ 7).

From [SW2, Theorem 4.4] we know that ¢¢(2n + 7) = 0 for n # 0 (mod 3).
Thus combining the above with (2.1) we deduce the result.

Corollary 4.2. Let n € N. If 3 | n, then n is represented by xz(z — 1)/2 +
27y(y —1)/2 if and only if 2 | ord,(2n +7) for every prime p =5 (mod 6) and
there is a prime divisor of 2n + T represented by 4x* + 2xy + Ty>. If 31 n, then
n is represented by x(x —1)/2+27y(y —1)/2 if and only if n = 1,10 (mod 27)
and 2 | ord,(2n + 7) for every prime p =5 (mod 6).

Theorem 4.4. Letn € N, b € {23,31} and n+ (b+1)/8 = 2%n¢(2 1 ng). If
there is a prime p such that (¥) = —1 and 2 { ordyng, then t,(1,b) = 0. If
2 | ordyng for every prime q with ({) = —1, setting by = (b+1)/8 we have

3t,(1,b) — H (14 ordyng)
($)=1
(0 if there is a prime q such that ¢ = 2x% 4+ xy + biy?
and 3 | (1 + ordgny),
—-r T (4 ordyn)
p=x2+zy+2b1y2#b
if « =0,1 (mod 3) and ordgng = 0,1 (mod 3)
for every prime q = 2% + xy + b1y?,
2(—1)~ II (1+ ord,ng)
p=x2+zy+2b1y2#b
if « =2 (mod 3) and ord,ny = 0,1 (mod 3)

L for every prime q = 2x% + xy + biy?,
11




where

p= > 1

p=2x2+xy+biy>
ordp,no=1 (mod 3)

and p runs over all distinct prime divisors of ng.

Proof. From Theorem 2.1 we have 4t,,(1,b) = R(1, 1, 2by;2n+2b;)—R(1,0, b; 2n+
2b1). By Remark 2.1,
0 if 2¢n+ by,
R(l,O,b;2n+2b1):{ if21n+ b
R(1,1,2b1;(n+01)/2) if 2| n+by.
Thus
R(1,1,2b1;2n + 2b if 2 + by,
(4.4) 4tn(1,b):{ ( 1;2n 1) b 1 fn+ b
R(1,1,2b1;2n + 2b1) — R(1,1,2by; 2420 if 2 | n + by.
As H(-b) = {[1,1,2b1],(2,1,b1],[2,—1,b1]} and f(—b) = 1, using Lemma 2.1
we see that for m € N,
R(1,1,2b1;m) +2R(2,1,b1;m) = N(m,—b) =2 —b )
Set F'(m) = (R(1,1,2b1;m) — R(2,1,b1;m))/2. We then derive
4 2 —b
(4.5) R(1,1,2b15m) = S F(m) + 5 > (?>

klm

From [SW1, Theorem 7.4(i)] we know that F'(m) is a multiplicative function of
m. For any nonnegative integer r, by [SW1, Theorem 8.6(i)] we have

—1 ifr=1 (mod 3),
(4.6) F(2)={ 0 ifr=2(mod3),
1 ifr=0 (mod 3).

If 24 n+by, as F(m) is multiplicative we have F(2n+2by) = F(2)F(n+b1) =
—F(n+by). We also have

’“'2;2171 <_?b> B k|;b1 {<%b> - <;_lf)} B 2k|;b1 (%)

Thus combining the above we obtain

4 _
A(1,0) = R(L,1,2b1; 20+ 201) = 3 F(2n+201) + 5 > (%)

k|2n+2by

Wl N

- —%F(n+b1) +§ 3 (%)

k|n+bl
12



Now assume 2 | n+by. As F(m) is multiplicative and n + by = 2%ny(2 1 ng),
by (4.4) and (4.5) we have

4t,,(1,b)
(reeam £ (*52))3( £ (- £ ()

= 2 (F(2*"'ng) — F(2° 'no)) + § 2 (%b>

k|2a+1’n0
k’(2°‘71n0

%(F(Z‘)‘H)F(no) — F2* ) F(no)) + g g; {(2;2:) + (QQ_ﬁk)}
;

a+1 a—1 4 —b
(FE™) = P )Fmo) + 5 > ().

k‘no

— —

L W~

By (4.6) we have
—1-0=-1 ifa=0 (mod 3),
FehYy—r*)={ 0-1=-1 ifa=1 (mod 3),
1-(-1)=2 if a=2 (mod 3).

Thus,
(X () = F(ng)) ifa=0,1 (mod 3),
(L) = M
%(MZ (22) +2F(ng)) if o =2 (mod 3).

As f(—=b) = 1, combining the above with (2.1) and [SW1, Theorem 10.2(i)
(with n =ng, d = —b, I = [1,1,2b1], A =[2,1,b1])] we deduce the result.
Corollary 4.3. Letn € N, b € {23,31} andn+ (b+1)/8 =2%¢ (21t no). If
a=0,1 (mod 3), then n is represented by x(x —1)/2+by(y — 1)/2 if and only
if 2 | ordyng for every prime p with (¥) = —1 and there is a prime divisor of
ng represented by 2x% 4+ xy + HleQ.

Theorem 4.5. Letn € N and n+ 3 =2%n(21{ng). Then

%(kz (£) +2¢1(ng)) if @ =2 (mod 3),

tn(1,23) = " |

%(kz (%) —¢1(ng))  ifa=0,1 (mod 3).
ng

Proof. For m € N let F\(m) = (R(1,1,6;m) — R(2,1,3;m))/2. By [SW2,
(4.1)] we have F(m) = ¢1(m). According to the proof of Theorem 4.4 we have

%(ME: (—723) — F(ng)) ifa=0,1(mod 3),

(> (%%) +2F(ng)) if & =2 (mod 3).

k|n0

tn(1,23) =

Wl

13



Thus the result follows.

8n+a+b
(2,a+b)

Theorem 5.1. Letn € N, b € {6,10,12,22,28,58} and 8n+b+1 = p*, where
p is an odd prime and o € N. Let b= 2"by(21 by). Then

tn(l,b):{ ol if2ta, p=b+1 (mod 8) and (%) =1,

0 otherwise.

5. Formulas for ¢,,(a,b) when is a prime power.

Proof. From [SW1, Table 9.1] we see that p = 422 +4zy + (b+1)y* = (2 +
y)2+by? if and only if p = b+1 (mod 8) and (%) = 1. By Theorem 2.1 we have
At,(1,0) = R(4,4,0+1;8n+b+1) = R(4,4,b+1;p%). As [4,4,0+1] € H(—16b),
H(—16b) = Cy x Cy (see [SW1, Proposition 11.1(ii)]) and f(—16b) € {2,8},
applying Theorem 2.3(ii) (with @ = 1) and the above we obtain the result.

Theorem 5.2. Letn € N, b € {3,5,11,29} and 8n + b+ 2 = p®, where p is
an odd prime and o € N. Then

tn(2,b):{ ol if2ta, p=b+2 (mod 8) and (§) = -1,

0 otherwise.

Proof. From [SW1, Table 9.1] we see that p = 82% +8xy+ (b+2)y? = 2(2z +
y)?+by? if and only if p = b+2 (mod 8) and (£) = —1. By Theorem 2.1 we have
At,(2,0) = R(8,8,b+2; 8n+b+2) = R(8,8,b+2;p%). As [8,8,b+2] € H(—32b),
H(—32b) = CyxCy (see [SW1, Proposition 11.1(ii)]) and f(—32b) = 2, applying
Theorem 2.3(ii) (with a = 2) and the above we obtain the result.

Theorem 5.3. Let n € N and 8n + 19 = p®, where p is an odd prime and
a € N. Then

ol if2ta and p=19 (mod 24),

tn(1,18) = O‘T_l if 24« and p = 3,

0 otherwise.

Proof. From [SW1, Table 9.1] we see that p = 422 + 4zy + 19y = (2z +
y)?+18y? if and only if p = 19 (mod 24). By Theorem 2.1 we have 4t,,(1, 18) =
R(4,4,19;8n + 19) = R(4,4,19; p®). Clearly H(—288) = {[1,0,72],[8,0,9],
[4,4,19],[8,8,11]} = Cy x Cy and f(—288) = 6. If p # 3, then p 1 f(—288).
Thus applying Theorem 2.3(ii) (with @ = 1 and b = 18) and the above
we obtain the result. If p = 3, then o > 3. As [4,4,19] = [4,3 - 4,3% .
3] and [4,4,3] = [3,—4,4] = [3,2,3], by [SWI1, Theorem 5.3(ii)] we have
R(4,4,19;3%) = R(3,2,3;3%"2). As H(—32) = {[1,0,8],[3,2,3]} and f(—32) =

2, by the above and Lemma 2.2 we have
20 —24+1) if21a,

4t,(1,18) = R(3,2,3;3°72) = ( ) _ f
0 if 2 | a.

This completes the proof.
14



Theorem 5.4. Let n € N and 8n + 11 = p®, where p is an odd prime and
a € N. Then

atl if24a and p =11 (mod 24),
tn(2,9) =< <L if2fa andp =3,

0 otherwise.

Proof. From [SW1, Table 9.1] we see that p = 822 + 8zy + 11y? = 2(2x +
y)? + 9y? if and only if p = 11 (mod 24). By Theorem 2.1 we have 4t,,(2,9) =
R(8,8,11;8n + 11) = R(8,8,11; p®). Clearly [8,8,11] € H(—288), H(—288) =
Cy x Cy and f(—288) = 6. If p # 3, then p{ f(—288). Thus applying Theorem
2.3(ii) (with @ = 2 and b = 9) and the above we obtain the result. If p = 3,
then a > 3. As [8,8,11] = [11,-8,8] = [11,3 - (—10),32 - 3] and [11, -10,3] =
3,10,11] = [3,—2,3], by [SW1, Theorem 5.3(ii)] we have R(8 8,11;3%) =
R(3,-2,3;3%72) = R(3,2,3;3“72). As H(—32) = {[1,0,8],[3,2,3]} and f(—32)

= 2, by the above and Lemma 2.2 we have
20 —2+4+1) if 21a,

4t,(2,9) = R(3,2,3;3%7?) = ( ) _ T
0 if 2 | a.

This proves the theorem.

Theorem 5.5. Let n € N, b € {7,11,19,31,59} and 4n + (b + 3)/2 = p°,
where p is an odd prime and oo € N. Then

b—3

£ (3,0) = O‘T"H z'fQJ(oz,pEb‘"T?’ (mod 12) and (%):(—1)7(
0 otherwise.

wlo

),

Proof. By Theorem 2.1 we have 4t,,(3,b) = R(6,6, %53;4n + £2) = R(6,6,
b+3 p®). Clearly H(—12b) = {[1,0, 3b], [3,0, ], (2,2, (3b+1)/2], [6,6, (b+3)/2] =
Cg X Cg and f(—12b) = 1. It is easily seen that p = 622 + 6zy + b’g?’yQ =
1(3(2z + y)? + by?) if and only if p = —b (mod 3), p = 2 (mod 4) and
(%) = (_76) = (%) = (m) Thus applying Theorem 2.3(i) (with a = 3) and
the above we obtain the result.

Theorem 5.6. Let n € N and 8n + 7 = p®, where p is an odd prime and
a € N. Then

a+1 ) —
. (3,4):{ 5 if2fa and p =7 (mod 24),
0 otherwise.

Proof. By Theorem 2.1 we have 4t,,(3,4) = R(12,12,7;8n+7) = R(12,12, 7,
po). As[12,12,7] = [7,—12,12] = [7,2,7], H(—192) = {[1,0,48], [3,0, 16], [7, 2, 7],
[4,4,13]} =2 Cy x Co, f(—192) = 8, and p is represented by 7x? + 2zy + Ty? if
and only if p = 7 (mod 24), applying Theorem 2.3(ii) (with a = 3 and b = 4)
we obtain the result.

From [SW1, Theorem 5.1] we deduce:

15



Lemma 5.1. Let d be a discriminant with conductor f. Let p be a prime not

dividing f and o € N. Suppose H(d) = {I, A, A%, A3} = Oy with A* = 1. Then

( w(d) if pld, 2%« and p is represented by A2,
w(d)(a+1) ifptd, 21 and p is represented by A2,
R(A?,p%) = w(d)§ if ptd, 4| « and p is represented by A,
w(d)(§+1) ifpfd, 4| a—2 and p is represented by A,
. 0 otherwise.

Theorem 5.7. Let n € N and 8n + 9 = p®, where p is an odd prime and
a € N. Then

(a+1)/2 if2ta and p = 42% + 4y + 992,

1(1.8) = a/d if 4| o and p =3 (mod 8),
) (a+2)/4 ifd]a—2 and p =3 (mod 8),
0 otherwise.

Proof. From Theorem 2.1 we know that 4t¢,(1,8) = R(4,4,9;8n +9) =
R(4,4,9;p%). As H(—128) = {[1,0,32],[4,4,9],[3,2,11],[3, 2, 11]} = C4, we
see that p = 322 + 22y + 11y? if and only if p = 3 (mod 8). Since w(—128) = 2
and f(—128) = 4, applying the above and Lemma 5.1 (with A = [3,2,11] and
A? = [4,4,9]) we obtain the result.

Theorem 5.8. Let n € N and 4n + 9 = p®, where p is an odd prime and
a € N. Then

(a+1)/2 if2fa and p = 222 + 22y + 992,

] o/ if 4| o and p=3,7,11,23,27,31,39,63 (mod 68),
) (@+2)/4 ifd|a—2and p=3,7,11,23,27,31,39,63 (mod 68),
0 otherwise.

Proof. From Theorem 2.1 we know that 4t¢,,(1,17) = R(2,2,9;4n + 9) =
R(2,2,9;p%). As H(—68) = {[1,0,17],[2,2,9],[3,2,6],[3,—2,6]} = Cy4, we see
that p = 322 + 2zy + 6y? if and only if (_?1) = (177) = —1. Since w(—68) = 2,
f(=68) =1 and (i) = () = —1 if and only if p = £3,+5,+6,+7 (mod 17),
applying the above and Lemma 5.1 (with A = [3,2,6] and A% = [2,2,9]) we
obtain the result.

6. Criteria for R(K,n) >0 (K € H(d)) and t,(a,b) > 0.
Let d be a discriminant, a,b,c € Z and > — 4ac = d. For n € N we

define R'([a,b,c|,n) to be the number of proper primary representations of
n = ax? + bry + cy? as in [SW1, Definition 3.2]. For a > 0 and d < 0, we have

R'([a,b,c],n) = [{{z,y) € Z*: n= a2’ +bay +cy?, (z,y) =1}].

From [SW1, Lemma 5.2 and Theorem 5.2] we deduce the following lemma.
16



Lemma 6.1. Let d be a discriminant with conductor f. Let K € H(d) and
t € N. Let p be a prime such that pt f.

(i) If (%) = —1, then R'(K,p') = 0.

(ii) If (:%) =0, then p is represented by unique A € H(d) and we have

w(d) ift=1and K = A,

R (K,p) =
(K, ') {0 otherwise.

(iii) If (g) =1, then p is represented by some A € H(d) and we have

0 if K # At A,
R(K,p")={ w(d) if Kc{A" At} and A* # A,
2w(d) if K= Al = At

Lemma 6.2 ([SW1, Theorem 7.1]). Let d be a discriminant. If ni,na,
.y n.(r = 2) are pairwise prime positive integers and K € H(d), then

R(K,ning---ny) = @ > R(K1,n1)R(K3,n2) - -- R(K,,ny)
w Ki,...,K,.€H(d)
KiKs - K,.=K
and
1
R/<K)n1n2"'nr) = W Z R/(K17”1)R/(K27n2)"‘R/(Kr,nr)-

Ki,...,K,.€H(d)
KKy K.=K

Theorem 6.1. Let d be a discriminant with conductor f. Let K € H(d)
and n € N with n > 1 and (n,f) = 1. Then R'(K,n) > 0 if and only if
n=pit-pYpst1---pr and K = P -+ - P& Psq--- P., where p1,...,p, are
distinct primes such that (p%) =1 or 0 according asi < s ori > s, and P; is
a class in H(d) representing p;. Moreover, if the above conditions hold and we
arrange the order of Py,... , Ps so that

P #P . Pe# P, Py =P, Ps=P,
then
R'(K,n) = 2°"Fw(d)e(K,n),
where

e(K,n) = HJg (L2,....ky: [[B™ :IH

Jjed
and I is the identity in H(d).
17



Proof. Let p be a prime divisor of n and p® || n. If (g) = —1orif (%) =0
and a > 2, by Lemma 6.1 we have R'(M,p*) = 0 for any M € H(d). Thus,
using Lemma 6.2 we see that

1
RI(K,n)= w(d) > R(Ky,p*)R'(Kzn/p*) =0.
Kl,KQGH(d)
K1 Ko=K
Now assume n = pi* -+ pSps1---pr (1,...,as € N), where p1,...,p, are
distinct primes such that (pil) =... = (p%) =1 and (pil) =... = (p%) = 0.
For later convenience we set ag11 = --- = a, = 1. Applying Lemma 6.2 we see
that
1 (07 (7
R = s 2 R R p).
Ki,...,K,.€H(d)
KiK.=K

Thus R'(K,n) > 0 if and only if there exist Ki,...,K, € H(d) such that
Ky---K, =K and R'(K;,p;") >0 (i =1,...,r). Hence applying Lemma 6.1
we see that R'(K,n) > 0 if and only if there exist K1, ... , K, € H(d) such that
Ky---K,=K and K; = P (i=1,...,r), where P, € H(d) can represent p;
(t=1,...,r).
Now suppose K = P/ --- P& P,y ---P., where Pj,..., P, can represent
pi,- .. ,pr respectively, and
PL#£P . Pe# P, P =P, Po=P "
From Lemma 6.1 we know that
e [wld) if1<i<
RAE™ P = { 2w(d) ifk<i<s.
Thus
R(PE ) RU(P2, p27) = 2~ Fu(d)”

Since P;j = Pj_1 for £ < 7 < r, by the above and Lemma 6.2 we have

RE @ = S R R (K p)
Ki,..,K,€H(d)
K1 Kp=K
= > R/(K1,p) - R(K,p pi)
K- K.=K
Ky=PF1, . K=P7 %k

Xet1
Kk+1:Pk+f' yeor s Kp=POT

- Z 25 Faw(d)"

Ky K,=K
Ky=PF1 | K=P %k

X1
Kk+1:Pk+f e K =POT

= > 25 Fa(d)".

Ky=PE1, | K,=P %k
Kl...Kk:pf‘l...p;:k

18



Thus

R(K,n) =2k ‘{51,... D el ek € {1, -1},
Pyt ...pljkak =P pgk}’
=2 Fw@|{7C{1,2,... . k}: [P =]] P}
jeJ jeJ
= 25"Fw(d)e(K,n).

This completes the proof.

Corollary 6.1. Let d be a discriminant with conductor f. Let n € N with

(n, f) = 1. Supposen = pJ* - -p¥psy1---pr (Q1,... ,a5 € N), wherepy, ... ,pr

are distinct primes such that (i) =...= (i) =1 and ( d ) =...= (i) =
p1 Ps Ps+1 Dr

0. Assume that p; is represented by P, € H(d) (i = 1,...,s). Let I be the

identity in H(d) and k = |{i € {1,2,... ,s}: P? # I}|. Then there are at most

2% classes K € H(d) such that R'(K,n) > 0.

As e(K,n) < 2%, by Theorem 6.1 and [SW1, (5.1)] we have:

Corollary 6.2. Let d be a discriminant with conductor f. Let K € H(d) and
n € N with (n,f) = 1. Then R'(K,n) < 2°w(d), where s is the number of
distinct prime divisors p of n such that (g) =1.

From Theorem 6.1 we deduce the following result.

Theorem 6.2. Let d be a discriminant such that H(d) is cyclic with generator
A. Let f be the conductor of d. Let h(d) = h=1 (mod 2) and aq,... ,as € N.
Let p1,...,p, be distinct primes such that (pil) = ... = (ps) =1, ps+1 | d,
Pst1t [y pr | dy prt f. Suppose that p; is represented by A% and that for
i€{1,2,...,s}, p; is not represented by the identity in H(d) (that is h{c¢;) if
and only if 1 < k. Then

R/(A61a1+"‘+ckak,p?l .. -p?spsﬂ .. 'pr)

= 25_kw(d)‘{J c{1,2,... ,k}: chaj =0 (mod h)}‘

jeJ

Lemma 6.3. Let d be a discriminant with conductor f. Let p be a prime such
that pt f. Let K € H(d) and t € N. Let I be the identity in H(d).

(i) If 2 | t, then
K=1 if (
K = AP for some B € {0,42,..., £t} if(

) 207_1;

R(K,p") >0 < { =1,

hSRISWRSRISH

where A € H(d) is chosen so that p is represented by A.
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(ii) If 21t, then

K=A if (
K = AP for some B € {£1,43,... ,+t}, if(

)
)

0,
R(K,p") >0 <= { .

hSRISTRSRISH

2

where A € H(d) is chosen so that p is represented by A.

Proof. If (%) = 0, —1, the result follows from [SW1, Theorem 5.1]. Now we
assume (%) = 1 so that p is represented by some class A € H(d). From [SW1,
Lemma 5.1] we have R(K,p') = ZEZ(Q)} R/(K,p'=2"), where [-] is the greatest
integer function. Thus R(K,p") > 0 if and only if for some i € {0,1,...,[t/2]}
we have R'(K,p'~2%) > 0. This together with Lemma 6.1(iii) yields the result
in the case (%) =1.

Theorem 6.3. Let d be a discriminant with conductor f. Let K € H(d)
and n € N with n > 1 and (n,f) = 1. Then R(K,n) > 0 if and only if

n=pyt---pdr andK:Pfl---PSBSPS+1--~Pm (m <r), where aq,... ,a, € N
and p1,...,p, are distinct primes such that
d d
<_) = <_> =1, p;|d 2tc; fors<i<m,

d
<—> €{0,—-1}, 2| a; form<i<r,
pi

P; € H(d) is chosen so that p; is represented by P; (1 < i < m) and B; €
{ta;, H(a; — 2),...,£(a; — 2[e;/2])} for 1 <i < s.

Proof. Let p be a prime divisor of n and p® || n. If (g) = —1 and 21t a, by
Lemma 6.3 we have R(M,p®) =0 for any M € H(d). Thus, using Lemma 6.2
we see that

1

R(E.n) = oo 30 RO p)R(K2,n/p%) = 0.
Ky, Ko€H(d)
K1Ky=K
Now assume n = pi'---p&r, where pi,...,p, are distinct primes such that

(6.1) holds. For i = 1,...,m suppose that p; is represented by P; € H(d). By
Lemma 6.2 we have

1 a a
R(K,n) = ——— E R(K1,p{") - R(K,,pyr).
w(d) Ki,...,K,€H(d)
K K,=K

Thus R(K,n) > 0 if and only if there are Ki,...,K, € H(d) such that
Ky---K, =K and R(K;,p;") >0fori=1,...,r.
20



For i € {m+1,...,r}, from Lemma 6.3(1) we know that R(K;,p;") > 0
if and only if K; is the identity in H(d). For i € {s+ 1,... ,m}, by Lemma
6.3 we see that R(K;,py") > 0 if and only if K; = P;. Thus R(K,n) > 0 if
and only if there are K1,... , K € H(d) such that Ky -+ - KsPsyq-+- Py, = K
and R(K;,p;") > 0 for every i € {1,...,s}. By appealing to Lemma 6.3
again we see that R(K,n) > 0 if and only if K = P ... Pf«P, ;... P,, and
Bi € {£ai, £(a; — 2),...,+(e; — 2[ev;/2])} for ¢ = 1,...,s. This proves the
theorem.

From Theorem 6.3 and [SW1, (5.1)] we deduce:

Theorem 6.4. Let d be a discriminant with conductor f. Let K € H(d) and
n € N with (n, f) = 1. Then there are at most []a)_,(1 + ord, n) classes
K € H(d) such that R(K,n) > 0, where in the product p runs over all distinct
prime divisors of n satisfying (%) = 1.

Let a,b,n € N with (a,b) =1 and 41 a + b. By Theorem 2.1 we have

R([2a,2a, “°],4n + “£2)  if 2 | a+b,

4ty (a,b) =
(a.0) {R([4a,4a,a—|—b],8n+a—l—b) if 24a+b.

Thus we may use Lemma 6.3 and Theorem 6.3 to give a criterion for ¢,,(a,b) > 0

provided (%gﬁfg)”, f(—4ab)) = 1.
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