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ABSTRACT. Let Z be the set of integers, and let p be a prime of the form 8%k + 1. Suppose
q€Z,21q,ptq, p=c®>+d?> =22+2qy? c,d,z,y € Z and c=1 (mod 4). In this paper we
establish congruences for (—q)(®®~1)/8 (mod p) and present new reciprocity laws.
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1. Introduction.

Let Z be the set of integers, i = /=1 and Z[i| = {a + bi | a,b € Z}. For any positive
odd number m and a € Z let (%) be the (quadratic) Jacobi symbol. For convenience we
also define () =1 and (=%;) = (). Then for any two odd numbers m and n with m >0

m—1 n—1

or n > 0 we have the following general quadratic reciprocity law: (%) = (=1)72z "= ().

For a,b,c,d € Z with 21 ¢ and 2 | d, one can define the quartic Jacobi symbol (3122)4
as in [S1,52,54]. From [IR] we know that (3:22)4 = (‘C‘IS;)ZI In Section 2 we list main

properties of the quartic Jacobi symbol. See also [IR], [BEW] and [S4]. For the history of
quartic reciprocity laws, see [Lem].

Let p be a prime of the form 4k + 1, ¢ € Z, 24 q and p { q. Suppose that p = ¢ + d? =
2?2+ qy?, c,d,x,y € Z, ¢c = 1 (mod 4), d = 2"dg and dy = 1 (mod 4). Assume that
(c,x +d) =1 or (dy,z + ¢) = 1, where (m,n) is the greatest common divisor of m and
n. In [S5], using the quartic reciprocity law the author deduced some congruences for
q[P/8] (mod p) in terms of ¢, d, z and y, where [a] is the greatest integer not exceeding a.

Let p be a prime of the form 8k + 1, ¢ € Z, 21 g and p 1 q. Then ¢ is an octic residue
(mod p) if and only if ¢»~1/8 = 1 (mod p). In the classical octic reciprocity laws (see
[Lem] and [BEW]), we always assume that p = ¢* + d? = a® + 2b* (a,b,c,d € Z). Inspired
by [S5], in this paper we continue to discuss congruences for (—¢)®~Y/8 (mod p) and
present new reciprocity laws, but we assume that p = ¢ 4+ d? = 22 + 2qy?. Here are some
typical results:
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x Let p and ¢ be primes such that p =1 (mod 8), ¢ = 7 (mod 8), p = 2 +d? = 2% +2qy?,
¢,d,x,y € Z, ¢ =1 (mod 4), d = 2"dy and dy = 1 (mod 4). Assume (¢,z +d) = 1 or
(do,z + ¢) = 1. Then (—q)p%l = (4)™ (mod p) if and only if (E;g;)% =14" (mod q).

x Let p = 1 (mod 8) be a prime, p = ¢® + d? = 22 + 2(a? + b*)y?, a,b,c,d,z,y € Z,
a # 0,4 | a (a,b) =1, ¢ =1 (mod 4), d = 2"dy and dy = 1 (mod 4). Assume
(c,x+d) =1or (dy,z+¢c) = 1. Then (—a2 —b?)"5 = (—1)5+%(<)™ (mod p) if and only

if (lactbd/ey, — jm,

x Let p be a prime of the form 8k +1 and a € Z with 2 { a. Suppose that p = ¢? +d? =
22 + (a®> + 1)y?, e,d,x,y € Z, ¢ = 1 (mod 4), d = 27do(2 1 dp) and 4 | y. Assume
(c,x+d)=1or (dy,x + c) = 1. Then (a + Va? + l)p%1 = (—1)iT4 (mod p).

When a is even, a congruence for (a++/a2 + 1)P~1/% (mod p) was given by the author
in [S6, Corollary 4.1]. When a > 3 is a positive integer and a?+1 is squarefree, a++v/a? + 1
is just the fundamental unit €,2.1 of the quadratic field Q(v/a? + 1). For early results and
conjectures on egp_l)M (mod p), see [L2],[LW1],[LW2],[HK],[Lem] and [S2].

Throughout this paper, if n € Z, 2% | n and 2%+ { n, then we write that 2% || n.

2. Basic lemmas.

Lemma 2.1 ([S4, Proposition 2.1]). Let a,b € Z with 2t a and 2 | b. Then

7 a?4b2-1 a?2-1 b
_ e (-
<a+bi)4 v (=1 =i

(D5 (a=b)=1/4 ey | p,

- a—1
4 L(=1) 2 (b—a)—l_1
) 1

and (1+i)

b
oo if2 || b.
Lemma 2.2 ([S4, Proposition 2.2]). Let a,b € Z with 2ta and 2 | b. Then

(7). = (0 and () =0T =it

a+bi/a a+bi/a

Lemma 2.3 ([S4, Proposition 2.3]). Let a,b,c,d € Z with 2 tac, 2 | b and 2 | d. If
a+ bi and ¢+ di are relatively prime elements of Z[i], we have the following general law
of quartic reciprocity:

|

()=

(D=5 (55 0

.c—l_’_g.a-i—b—l <C+d7/>
3 T3 2 .
a—+bi/a

In particular, if 4| b, then (3132)4

Lemma 2.4 ([E], [S1, Lemma 2.1]). Let a,b,m € Z with 2{m and (m,a® + b*) = 1.
Then, (a—’T)_’Lbi)?l _ (a2+b2)'

m

Lemma 2.5 ([S3, Lemma 4.3]). Let a,b € Z with 2+t a and 2 | b. For any integer x

with (x,a® + b%) = 1 we have (a‘fbi)z; = (azf_;ﬁ)-
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Lemma 2.6 ([S5, Lemma 2.9]). Suppose c,d,m,x € Z, 21 m, 2* = ¢* + d? (mod m)
and (m,x(z +d)) = 1. Then (<t%), = (m(m—l—d)).

m

Lemma 2.7. Let p be a prime of the form 8k + 1, g € Z, 2t q and p { q. Suppose that
p=c?+d? =22+ 2qy? with c,d,z,y € 7Z, c=1 (mod 4), d = 2"dy and dy = 1 (mod 4).
If ( x/y.)4 = (=1)*55 4", then

ct+di
b {04V@W”<mwp> if8]d—4,
(—=1)*F5(4)" (mod p) if8|d.

Proof. As ¢ =1 (mod 4) and 4 | d we see that ¢ + di is primary in Z[i]. Since i =

d/c (mod c+di) we have (£)"7 = (£4), = (—1)*+ 5" = (=1)** 5 (2)" (mod c+di).

As (%)2 = —2¢ (mod p) and the norm of ¢ + di is p, from the above we deduce that
(—29)"% = ()" = (-1)**"% (£)" (mod p). By [L1] or [HW, (1.4) and (1.5)],

bt _ e\ (&)= ()"t =4 (mod p) if8|d—4,
(21) S <3) B { (—1)¥ (mod p) if 8| d.

Thus the result follows.

3. Congruences for (—q)®~1/8 (mod p) with p = ¢® + d? = 2% + 2¢3>.

Theorem 3.1. Let p be a prime of the form 8n+ 1, g € Z, 21 q and p 1 q. Suppose that
p=c?+d? =22+ 2qy? with c,d,z,y € Z, c=1 (mod 4), d = 2"dy, dg = 1 (mod 4) and
(c,z +d)=1. Assume that (MM =ik, Then

(—1)*FFiF ’(%) (mod p) if g =1 (mod 8),
(—q) " = (=153 () (mod p) if g =3 (mod 8),
(1) ST (mod p) i g =5 (mod 8),
(— 1)i( ¥ (mod p) if ¢ =7 (mod 8).
Proof. We choose the sign of y so that y = 2%y and yo = 1 (mod 4). Since p =

2+ d?=122+2qy?> =1 (mod 8) we seethat 21x,2|y,4|d, (x,qy) =1 and p{x. Thus
(,*+ (x+d)?) = (:c p)=1. As2qy® =+ (d+2)(d—x) =2+ (v+d)? —2x(x +d) we
see that (qy,x+d) | ¢, (qy,x+d) = 1 and (qy?, (2 +(x+d)?)/2) = 1. Tt is easily seen that

2
C—f—(fU—f—d)Z —’L 2 (1+Z)(:c+§i:tc+ :t(:c—;d)—cl-) and so (%d:l:c) +( (x—;d) C) _c +(32:+d) )
Set e = (—1)° = As4|dand 4| c—1 we have x +d =¢ (mod 4) and 4 | (e(x 4+ d) — ¢).
From Lemmas 2.1-2.5, [S5, Lemma 2.10(ii)] and the above we see that

ik — (M) _ <Z>12(1+z) <I+6;+€c_'_€(x—|—2d)_ci>
! ! 4 a /4 q 4

a—(Z) L (a1 “1 e(otd)—c
= (=1 T '21' g _1%'(4) q
(3 m+d+£c + E(:E-’-d)—C/[/ 4
2 2
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and
2 2

(e ) (e, ) (e, )
z+d+ec e(z+d)—c . T\ z4dtec e(z+d)—c . x+d+ec e(z4+d)—c .
5+ 51’4 5+ 5174 5+ 5174

G ——

d (zt+d)—c, (z+d)—
:E+2+€C+EZU N i 2+(6w . 0)2

- <m+cé+:jfj(—w(frid)—ci>4<(02 + (:vy+ d)2)/2>

e(z+d)—c

+d+ e(xz+d)—c . _
e Cz> (—I)WHZt( y ! > .
z(z + d) 4 c+di/a

C2— xT 2 C2—(E2— xT C—EX CTEXT C—EXT _
Clearly, (—1)% = (—1)% = (—1)7'%—%5 (_1)T—%5 (-1)~ 5 —

Also,
x+d+tec + e(w+d)7ci

< 5 x($+d)2 )4: (d+5c+x(€d—c)i>4<5:;§i>4
<(8_Z)a(cc+dl)>4<;—}_-;)4 - <x(zjf—zd)>4(c—;dz)4

B (Z:L’(CL'(:—_;)Z))4<C+CZZ> ( aj—}—d > 2 (x(lm—:_zd)>4<c_fdi>4
_ (_1)z<z+d> L.spe olotd)- 1( x ) - (_1)%'m§1+12§1@'df( T ) '

c+di/a e+ di)a

Hence
( q ) _ (_1)%(14%)4-%15 . (_1)%.%1_’_;328,12'014;5( q;/y
:c-l—cé—l—ec_i_ €($+2d)7ci 4 o

= (—1) T 0+

1_’_128712.0141( x/y) .
4

c+di
Therefore
(=1 -1
o _1)q (4q) e C+)< Lyg—1
X (_1)%‘0(1+t)+%~’”51+—”28—1idf( m/ﬂ) .
c+di/4

It is clear that

i = DTS = (_1) (_1)% _ (_1)% = (~1) 3
cz—c czte —c? d?—8q(§)? y
(1) = (DS )P T
and so (—1) 7 0+ = (=1)5(+) = 1. Thus,

(L) =y

Now applying Lemma 2.7 we deduce the result.
4

a(ZH)-1
4

3D+ k-




Theorem 3.2. Let p be a prime of the form 8n+ 1, g € Z, 21 q and p 1 q. Suppose that

p=c®+d? = 2%+ 2qy® with ¢,d,x,y € Z, c = 1 (mod 4), d = 2"dy, dp = 1 (mod 4),

(do,z+¢c)=1 and (Mh =i*. Then

o1 [ ()T ()R (mod p) if g =1 (mod 4),
(—1)"= % (2)* (mod p) if =3 (mod 4).

C

Proof. Suppose 2™ || (z + ¢) and y = 2%y with yg = 1 (mod 4). Since p = ¢? + d? =
2% + 2qy* = 1 (mod 8) we see that 2z, 2 | y, 4 | d, (x,qy) = 1 and p | . Thus
(r,d>+ (z+¢)?) = (x,p) = 1. As2qy?> = d?> + (c+x)(c—x) = d* + (v +¢)? — 2z(z +¢) we
see that (qyo, z+c¢) | d3, (qyo,z+c) = 1 and (qu3, (x+c)?>+d?) = 1. We prove the theorem
by considering the three cases m < r, m = r and m > r. We only give details for the
first case. The other two cases can be proved similarly by using Lemmas 2.1-2.7. For the
details, see the author’s preprint “Congruences for ¢/?/8 (mod p) IT” at arXiv:1401.0493.

Now suppose m < r. Using Lemmas 2.1-2.5 and the fact (%)4 = 1 for a € Z with

(a,q) = 1 we see that

—(x+ )i —2m ) ztc | d 4 ®—1_ q-1 4
()= ()LL) s e (),
= (-1) (s
_(_1)q28-1+q;1-2md+1<((I+c)2+52)/2fw(x+c)>4( y >
(

-1 9-1. _d
8 2 om+1

o (z+c)?2+d?
Ry e

— (_1) QQs_l +q%1' de+1

—Qmm(a:+c)/2m> < y )

(z+c)2+d?
S

d da —1 m
By [857 p]-5]a (((w+c)2$d2)/22m) = (_1)2m+1t+4t(y_‘)4‘ We also have (HCQ—)AL =

ctdi LD +2%i

( z+ciii)£n — 77 73T and
2m 2
<_x(93 + C)/2m> (~1) SUCLOVE LTS W I ( mthc + 2%2 )
= (— om
T i /4 “a(@+e)/2m)a
_ (_1)9”<”C+C>2/2m+1.2maz+1 <.%’ +c+ di) ( di/2™ )
T a\(z+c)/2m )4

w(zte)/2M+1 g c+di 1
o () ()
x Ja\(x+c)/2m /4

_ (_1)z(w+c)z/2m+1'2md+1< * > (_1)%((2715)2*1)_
4

c+di
Thus,
Z-k — (W) — (_1)q2§1+q%1'2md+1i%'2i?—1
(31) q 2m41 (cc+c)2_1
x (1) e+ (_1)27%%%( z/y ) _
c+di/4

bt



As 2qy? = d? — (z + ¢)? + 2¢(z + ¢) we have

2

(32) qé/_m — 22T7m71d(2) . 2m71<

T+ c\2 T +c
2m> T om

Suppose m = 1. Then z = 1 (mod 4). From (3.2) we see that 2%~1¢q = 22772 — 1 +
¢ Z£¢ (mod 8) and so e = ¢(2271¢g — 2272 + 1) (mod 8). If 8 { d, then r = 2 and
zte = ¢(2%1¢ — 3) (mod 8). Thus,

(—1) i (_1)c§1+(22t*1q8—3)2—1 _ (_1)c28—1+<22f*2q—2)2(22t*2q—1>

= (CDSE Y ity

(_1) (z+(:;/2+liz~2‘rc _ (_1)22t—2q_1i22t—1q_3 _ _(_1) ( i = —g
Hence, from (3.1) we deduce that
2 _ (L‘H)2,1
k a®=1,4-1 ate (ete)/241 27( x/y >
=(—=1)"8 2 2 (—1 2 (=1 8
* = ()T () (1) )

—(—1 @4_% —i (=1 L—1+1+‘12ﬁ.% flf/y '
e s (208

That is, (Z%)y = (-1)"5
result.

If 8 | d, from (3.2) we see that 2*~'¢q = qy*/2 = —1 + ¢+ £ (mod 8) and so *1¢ =
c(2?71¢+ 1) (mod 8). Thus,

2 _ —
4B+ 4 k-1 Now applying Lemma 2.7 we obtain the

(z;c)271 C271_+_(22t71q+1)271 c2+d271+22t72q(22t72q+1)
2

(=D =(=1 ; =(=1) "=

= ()=t

SIS

From (3.1) and the above we derive that

((L‘<2|>C>271

( z/y ) — (_1)‘12‘1+§+p§1+q‘51‘3< z/y ) .
c+di/a c+di/a

ey () (=)' T B (mod p) if4|q 1,
(-1 (9 (mod p) if 4] q—3.

c

This yields the result.



Nowassumer>m>2 Then z = 3 (mod 4), 2r—m—1>2(m+1)—m—1 =

m+ 1> 3 and so q— = —2m~! 4 ¢ 2L (mod 8) by (3.2). Hence 2™ || y*, m = 2t and
sog=-2m"14c. xtf (mod 8). That is, £ = ¢(2™ ! + ¢) (mod 8). Thus,

— — x(x+c m (z:rknc)27 z4c m
(_1)q28 1+qu'2md+1 (_1) (z+ )2/2 +1,2md+1+ pL 1 ,(_1)27,1%'5“‘%%_2%'2%“
_ (—l)ﬂgl—’—%l'zmd-*-l (_1)—(2m721+q)+1.27‘—m—1d0+c2(2m7;+q)271 (_1) 2md+1 t+%t(—l)ﬁ
(1) ST ()@ T S p Bty

2 2
(_l)q 8—1+q%1'2r—m—1 ) (_1)(2'm—2+qgil)2r—7n—1+%+q 8—1+2m—3(27n—2+q)

d,p=1_ g+1 .
(—1)7 BT ) (D5 ifm =2,
(-1)= if m > 2.

Hence, from (3.1) and the above we get

(x/y> B ()& Tk i > m =2,
ctdi/a (—1)5 ¥ if 7 >m > 2.

Now applying Lemma 2.7 and the fact m = 2t we obtain

i (—1)% (HF = (1) GHD(DF (mod p) if r >m =2,
8
(—D)5(d)F = (=1)7 G (mod p)  ifr >m > 2.

C
This yields the result in the case m < r. Thus the theorem is proved.

Theorem 3.3. Let p and q be primes such that p = 1 (mod 8) and ¢ = 3 (mod 4).
Suppose p = c® + d? = 2% + 2qy?, ¢,d,x,y € Z, c =1 (mod 4), d = 2"dy, dy = 1 (mod 4)
and (C—dl)qul i™ (mod q). Assume (c,z+d) =1 or (dg,x +¢c) = 1. Then (—q)p%1
(=177 T ()™ (mod p).

c

Proof. Clearly q t = and z is odd. We first assume (¢, z+d) = 1. By the proof of Theorem
3.1, (g, (z+d)(*+(x+d)?)) = 1. It is easily seen that Zgiz%;; = E;gigz = <% (mod q).
Thus, from [S5, proof of Theorem 4.1] we have

(C/(w+d>+i) _ o m—t (1) i+t if ¢ =3 (mod 8),
q 4 (—1)%im if g =7 (mod 8).

Now, applying Theorem 3.1 we derive the result.
Now we assume (do,z + ¢) = 1. By the proof of Theorem 3.2, (¢,z + ¢) = (q,d* +
(z 4+ ¢)?) = 1. It is easily seen that HZFT)l = ¢=di (mod ¢). From [S5, p.18] we get

d—(z+c)t —
(Wﬁ =i = (—=1)" 45 4™ Thus, applying Theorem 3.2 we deduce the result.

The proof is now complete.
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Corollary 3.1. Let p and q be primes such that p = 1 (mod 8) and ¢ = 3 (mod 8).
Suppose p = ¢ + d* = 2% + 2qy?, ¢,d,x,y € Z, c = 1 (mod 4), d = 2"dy, q | cd and
do =1 (mod 4). Assume (c,x+d) =1 or (dy,x +c) =1. Then

- +(=1)*z" (mod p) if * = +¢ (mod q),
:F(_1)%+ZT71%1 (mod p) if z = +d (mod q).

q+1

)% (£1)* = 41 (mod q). If

Proof. If 2 = £c (mod g¢), then ¢ | d and so (< Ea
= (HFZ) T = F(-1)*% i (mod q). Now

x = +d (mod ¢), then ¢ | ¢ and so (C‘,]Cdz)q+1
applying Theorem 3.3 we deduce the result.

As an example, taking ¢ = 3 in Corollary 3.1 we see that if p is a prime of the form
24k +1 and so p = 2 + d? = 2% + 6y, and if (c,x +d) = 1 or (dp, > + ¢) = 1, then

(3.3) (_?,)pT_1 = { i(_l):gi (mod p) %f x f +c¢ (mod 3),
F(=1)"= £ (mod p) if x = +d (mod 3).

Theorem 3.4. Let p and q be primes such that p = 1 (mod 8), ¢ = 7 (mod 8), p =
A +d? = 2%+ 2qy% c,d,m,z,y € Z, c =1 (mod 4), d = 2"dy and dy = 1 (mod 4).
Assume (c,z +d) =1 or (do,z +¢) = 1. Then (—q)pg1 = (4)™ (mod p) if and only if

c—di q+1 -m,
(C+gl) =4" (mod q).
. at1 Lokl N
Proof. Observe that (C+gz)q+ — (edi) 7 T = (emdi) 7 — (C_xd")% (mod ¢). The

(2+d) 5 (s242qy2)
result follows from Theorem 3.3.

Corollary 3.2. Let p=1 (mod 8) and q =7 (mod 8) be primes such that p = ¢*> + d? =
2% + 2qy? with c,d,x,y € Z and q | cd(c®> — d?). Suppose ¢ = 1 (mod 4), d = 2"dy and
dop =1 (mod 4). Assume (c,z+d) =1 or (dy,x +c) =1. Then

(—1)*% (mod p) ifqle,
(o) = 1 (mod p) if qld,
g ] £(-1 i% (mod p) if 16| (¢ —7) and ¢ = +d (mod q),
(—=1)% (mod p) if 16| (¢ — 15) and ¢ = +d (mod q).
Proof. 1If ¢ | ¢, then ‘:g? = —1 (mod q). If q | d, then g;g; = 1 (mod q). If
¢ = +d (mod gq), then 2+g§ = F¢ (mod ¢). Thus the result follows from Theorem 3.4.

Theorem 3.5. Let p and q be distinct primes, p =1 (mod 8), ¢ =1 (mod 4), p = ¢*+d? =
2%+ 2qy%, q = a®> + b2, a,b,c,d, v,y € Z, c =1 (mod 4), d = 2"dg and dy = 1 (mod 4).
Assume (c,x +d) = 1 or (do,z + ¢) = 1. Suppose (“—erd)q f = (2)™ (mod gq). Then

(~0)'s = (=)F T (™ (mod p).
8



Proof. Clearly g 1 z. We first assume (¢,z + d) = 1. By the proof of Theorem 3.1,
(q, (x +d)(c® + (x +d)?)) = 1. Tt is easily seen that Z?——zgiflg = actbd . 2 (1mod ¢). Thus,
(0/(I+q-d)+i)4 — mtit

from [S5, p.20] we get . Now the result follows from Theorem 3.1
immediately.
Suppose (do, x+¢) = 1. By the proof of Theorem 3.2, (¢, (x+¢)(d?+ (z+¢)?)) = 1. Tt is

easily seen that Zgizgiig = actbd (11104 ¢). From [S5, p.21] we know that (Mh =

,mql

i . Now applying Theorem 3.2 we deduce the result. The proof is now complete.

Corollary 3.3. Let p = 1 (mod 8) and ¢ = 5 (mod 8) be primes such that p = ¢* +
d* = 2% + 2qy® with ¢,d,z,y € Z and q | cd. Suppose ¢ = 1 (mod 4), d = 2"dy and
dp =1 (mod 4). Assume (c,z+d) =1 or (dy,x+ c) =1. Then
( )p;l :i:(—l)%erT_lJF% (mod p) if £ = +c (mod q),
_q s = q9— Y .
+(-1)% "+ 24 (mod p) ifz =+d (mod q).

Proof. Suppose ¢ = a? + b? with a,b € Z. If x = 4c (mod ¢), then ¢q | d and so
(“Ca—t;bd)q%l = (%)q%l = (+1)"T = +1 (mod ¢). If 2 = £d (mod g), then ¢ | ¢ and so

(“Ca—tcbd)q%l = (%)%1 = (:i:%)q%l = i(—l)qs%sg (mod ¢). Now combining the above with
Theorem 3.5 we deduce the result.

Theorem 3.6. Let p and q be distinct primes such that p =1 (mod 8), ¢ = 1 (mod 8),
p=c*+d?=2%+2qy% q=a*+V% a,bc,dym,x,y €7, c=1 (mod 4), d = 2"dy and
dp =1 (mod 4). Assume (c,z+d) =1 or (dy,x+ c) =1. Then

() ) = () = () ot

Proof. Observe that b2 = —a? (mod ¢), p = 22 (mod ¢) and so

ke

(0)'T = (=14

(ac+bd>‘lgl _ (actbd)'T _ (ac + bd)*T _ <ac+bd>ql1
ac — bd (azcz_deg)%l - (a2 p)q81 =

The result follows from Theorem 3.5.

d q).
- (mod q)

Corollary 3.4. Let p and q be distinct primes of the form 8k + 1 such that p = ¢ +d? =
2% + 2qy? with c,d,x,y € Z and q | cd(c® — d?). Suppose ¢ = 1 (mod 4), d = 2"dy and
dp =1 (mod 4). Assume (c x+d) =1 or (dy,x+c)=1. Then
(1) +i+% (mod p) ifqle,
p1 (1ﬁ (mwp) ifqld,
(1) T5+% (mod p) if 16 | (¢ — 1) and ¢ = £d (mod q),
j:(—l)WJF%JF%% (mod p) if16| (¢ —9) and ¢ = £d (mod q).

Proof. Suppose that ¢ = a® + b? with a,b € Z. Then the result follows from Theorem

3.6 and the congruence for (g‘é—fgg)q% (mod ¢) in [S5, p.23].
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Theorem 3.7. Let p = 1 (mod 8) be a prime, p = ¢ + d* = 2% + 2(a® + b?)y?,
a,b,e,d,m,z,y €Z,a#0,2]|a, (a,b) =1, ¢c=1 (mod 4), d = 2"dy and dy =1 (mod 4).
Assume (c,x +d) =1 or (dy,z +c¢) =1. Then

oty = { GO (mod sala
LD ()™ (mod p) if4 a2,

— (M)4 _m

b+ ai

Proof. Suppose ¢ = a? + b? and (%)4 = ¢". Then clearly ¢ = 1 (mod 4)

and p 1 q. We first assume (c,x + d) = 1. By the proof of Theorem 3.1, (¢,z + d) =

(g, + (z + d)?) = 1. Since E;Eiijgz = <4 (mod ¢), from [S5, p.24] we know that

(Wh = (—1)%1'%+[%]z’*m. This together with Theorem 3.1 yields the result in this
case.

Now we assume (dg, z + ¢) = 1. By the proof of Theorem 3.2, (q,z + ¢) = (q, (z +¢)? +

d?) = 1. Since Z*_’Eiigz = C:;“ (mod q), from [S5, p.24] we know that

(—d/(a:+c)+i) (=it 4 a -2,
q 4 i if 4] a.
Now applying Theorem 3.2 we deduce the result in this case. So the theorem is proved.

Corollary 3.5. Let p = 1,9 (mod 40) be a prime and so p = ¢ + d?> = 22 + 10y? with
¢,d,x,y € Z. Suppose c =1 (mod 4), d = 2"dy and dg =1 (mod 4). Assume (c,z+d) =1
or (do,z +c) =1. Then

_ g_’__zfl_’_
(55 = { HLET
R

Proof. Clearly 5 | ¢d. When x = £¢ (mod 5) we have 5 | d and so (%)4 =

(55;)4 = +i. When z = £d (mod 5) we have 5 | ¢ and so ((2'11‘?/90)4 = (£5)a = 1.
Now taking a = 2 and b =1 in Theorem 3.7 we derive the result.

We remark that Corollary 3.5 partially solves [S4, Conjecture 9.8].

(mod p)  if x = £c¢ (mod 5),
4 (mod p) if x = +d (mod 5).

Cc

Yy
2
y
2

4. Congruences for UpT—l(Qa, —1) and Vi (2a,—1) (mod p).
For two numbers P and @ the Lucas sequences {U, (P, @)} and {V,,(P,Q)} are defined
by
UO(P7Q) = 07 Ul(P7Q) = 17 Un+1(P7Q) = PUn(P7 Q) - QUn—l(P7 Q) (n >
‘/O(P7Q) = 27 ‘/1(P7Q) = P7 Vn+1(P7Q) = Pvn(P7Q) - Qvn—l(P7Q) (n >
Set D = P? — 4Q). Tt is well known that

1)7
1).

(4.1) Un<P,Q>=¢15{(P+2@)"— PVDYY (b 2o,
(4.2) Vo (P, Q) = (@)n + (%ﬁ)".
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Theorem 4.1. Let p be a prime of the form 8k + 1 and a € Z with 2 1 a. Suppose that
p=c2+d> =22+ (®+1)y? c,dx,y €Z, c =1 (mod 4), d = 2"dy, y = 2'yo and
do =yo =1 (mod 4). Assume (c,x+d) =1 or (dp,x+c) =1. Then

(~)*F L (mod p) if 4|y -2,

0 (mod p) if 41y

0 (mod p) ifdly—2,

2(—1)5+% (mod p) if4|y.

ton )= |

and Vi (2a,—1) = {

Proof. Set a; = (1 — (=1)“Z a)/2 and by = (1 + (—1)QT_1a)/2. Then 2 | ay, 21 b; and

x—1
. aic+bid —1 x z—1.21 /(ajct+bid)/x
a?+1 = 2(a? +b?). It is clear that (( Lot 1b3{|-(6(7417:) 2 ))4 =(-1)"z = (%)4.

We first assume a = 1 (mod 4). Replacing d, z with —d, (—l)xT_lx in [S4, Theorem 8.3(i)]
we obtain
UL—l (2&, _1)

x—1

(F (1) (—ad — )5 (— €)1 CDT2(L1)*F ¢ (mod p)

if4]y—2and ((albctf;i)/x) = &1,

=\ FDIE (e} ) () 0D TR (1) % (mod )
if4]y—2and ({tdr) — 4
{ 0 (mod p) if4]y
and
(£2(-1)% 57 (—af — 55 (- )00 T2 (mod p)
if 4|y and ((allfjf;f?/x) = +1,
Ve (20,=1) = 0 sa(c) 5 74 (—a? — 1) (=) HO-CD T2 (mod )
if 4|y and ((albc;f;f?/x) = *+1,
( 0 (mod p) if4|y—2.
From Theorem 3.7 we know that
(—af —b})"%
(( (-1 )%+% (mod p) if 4] ay and ({4EED00), = 4
] DT AT (mod p) if 4 | ay — 2 and ((BEERD/TY, = 4
| 2= )%+%g (mod p) if 4] ay and ({0 9/0), = 4
[ £(-1)"7 T (mod p)  if 4] a; — 2 and ((DEHRD/T), — 4y,

Now putting the above together we deduce the result in the case a = 1 (mod 4). The case
a = 3 (mod 4) can be proved similarly by using [S4, Theorem 8.3(ii)] and Theorem 3.7.
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Corollary 4.1. Let p be a prime of the form 8k + 1 and a € Z with 2 1 a. Suppose that
p=c2+d> =22+ (®+1)y% c,dx,y €Z, c =1 (mod 4), d = 2"dy, y = 2'yo and
do =yo =1 (mod 4). Assume (c,x+d) =1 or (dp,x+c) =1. Then

(=1)5F% (mod p) st
(~1)*F T LG T (mod p) ifd [y 2.

x

(a+ vVa?+ 1)pZl =

Proof. By (4.1) and (4.2), (¢ + Va® + 1) = §Vs1 (2a,—1) + Va? + 1,1 (20, —1).
Now applying Theorem 4.1 we deduce the result.

Corollary 4.2. Let p be a prime of the form 8k + 1 and a € Z with 2 { a. Suppose that

p=c+d> =22+ (a®>+1)y? c,d,x,y €Z,c=1 (mod 4), d = 2"dy and dy =1 (mod 4).

Assume (c,z +d) =1 or (dg,x +¢) = 1. Then p | Up-1(2a,—1) if and only if 4 | y and
8

bl=44Y (mod 2).

Proof. By [S4, (1.5)], p | Up=1(2a,—1) <= Vp21(2a,—1) = 2(—1)1951 (mod p). Now
8
applying Theorem 4.1 we obtain the result.

Remark 4.1 Theorem 4.1 and Corollary 4.2 were conjectured by the author in [S4, Con-
jectures 9.17 and 9.19).
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