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Abstract

Let [x] be the greatest integer not exceeding x. In the paper we introduce the sequence
{U,} given by Uy = 1 and U, = —22,[2%] (53)Un—2 (n>1), and establish many recursive
formulas and congruences involving {U, }.
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1. Introduction

The Euler numbers {E, } are defined by

Epy=1 and E,=-— Z (znk>En—2k (I’l > 1),
k=1

where [x] is the greatest integer not exceeding x. There are many well-known identities and
congruences involving Euler numbers. In the paper we introduce the sequence {U,} similar to
Euler numbers as below:

/2
. = n=— n— > 1).
(1.1) U=1, U, 2; <2k)U n (n>1)

Website: http://www.hytc.edu.cn/xsjl/szh
The author is supported by the National Natural Sciences Foundation of China (No. 10971078).



Since U; = 0, by induction we have U,,—1 = 0 for n > 1. In Section 2 we establish many
recursive relations for {U,}. In Section 3, we deduce some congruences involving {U, }. As
examples, for a prime p >3 and k € {2,4,...,p—3} we have

/6l 4 62k +1) /p
xg’l *= m(g)[]p—l—k (mod p),

where (£) is the Legendre-Jacobi-Kronecker symbol; for a prime p = 1 (mod 4) we have

p—1

Up = (142(=1)7 )h(=3p) (mod p),

2

where h(d) is the class number of the form class group consisting of classes of primitive,
integral binary quadratic forms of discriminant d.

Let N be the set of positive integers. For m € N let Z,, be the set of rational numbers
whose denominator is coprime to m. For a prime p, in [6] the author introduced the notion of
p-regular functions. If f(k) € Z, fork=0,1,2,... and }'}_,, (Z) (—=D*f(k) =0 (mod p") for
all n € N, then f is called a p-regular function. If f and g are p-regular functions, from [6,
Theorem 2.3] we know that f - g is also a p-regular function. Thus all p-regular functions form
aring.

Let p be an odd prime, and let b € {0,2,4,...}. In Section 4 we show that f(k) = (1 -

(%) pk(”’IHb ) Ui(p—1)+» 1s @ p-regular function. Using the properties of p-regular functions

in [6,8], we deduce many congruences for {U,,} (mod p™). For example, if @(n) is Euler’s
totient function, for k,m € N we have

Usg(pny+0 = (1= (5)p")Us (mod p).
In Section 4 we also show that U,, = —16n — 42 (mod 128) for n > 3.
In Section 5 we show that there is a set X and amap 7 : X — X such that (—1)"Uy, is the
number of fixed points of 7".
In addition to the above notation, we also use throughout this paper the following notation:
Z—the set of integers, {x} —the fractional part of x, ord,n—the nonnegative integer o such

that p® | n but p**! tn (that is p® || n), u(n) — the Mobius function.

2. Some identities involving {U, }

Let {U,} be defined by (1.1). Then clearly U, € Z. The first few values of Uy, are shown
below:

Uy=-2,U4 =22, Us=—602, Ug = 30742, U;op = —2523002,
Uip = 303692662, Uy = —50402079002, U = 11030684333782.
Lemma 2.1. We have
i t" 1

T
LUii=grermy (1<3)



and

o 1nU t2n B (M E)
LN Ui = reos 1 M1<3)
Proof. By (1.1) we have
! -t —
(¢ +e *1)(,;)(]”%)*(” Z(zk)!)(go o)
oo [n/2] n i
=1+ Up+2 ( >Un 1

n;( &= \2k 2") !

Thus,

ZUZ" Z’ ._e’+e*’71'
Replacing ¢ with it and noting that e + e~ = 2cost we deduce the remaining result.

The Bernoulli numbers {B, } and Bernoulli polynomials {B,(x)} are defined by

n—1 n

Bo=1, Z()Bk (n>2) and B,,(x)—Z(Z)ka"_k(nZO).

k=0
The Euler polynomials {E,(x)} are defined by
oo "
(2.1) et+1 Z —' (Jt| < m),
which is equivalent to (see [3])
n n
(2.2) E,(x)+ ) <r) E.(x) =2x" (n>0).
r=0

o

—~

Nad

|
R =
1=

(”) (2x—1)"""E,
r=0 \I

= (B0 =280 (3)

- (B () - (3)
_I’l—|-1 n+1 ) n+1 ) .

(2.3)

In particular,

2(1-2"NB,,

1
=" — =
24) E,=2"E, <2) and E,(0) o



It is also known that (see [3])
(2.5) Bony3 =0, By(1—x) = (=1)"By(x) and E,(1—x)=(=1)"E,(x).
Lemma 2.2. For n € N we have

1 B 2 il 1 - 2n+1((_2)n+1 _ 1) 1
E(3) = (G2 =B (5) = (n+1)((—2)n+1)3”“<6>'

Proof. By (2.3) we have E, (%) = nil (Bpi1(3)—2"1B +1(é)) From Raabe’s theorem (see
[8.2.9)]) we have Byy1(§) + Buyi (g + %) = 27"Buy1(3)- As

(—=1)""'B,41 (%), we see that

Buin (é) — (2" = (=)™ By (1)

n+l(% + %) = Bn+l(%) =

Thus,

E(3) = iy (e (5) 280 ()
— (e ) ()
2 .(—2)”“—1 (1)

= Buii(=).
nt1 274 (=1 e

So the lemma is proved.

O
Theorem 2.1. For n € N we have
| Boi(L) 20221 +1)6 Baa(L)
U :32nE (7) -9 22n+l 1 32}1 3/ . 6
o >\3 ) 20+ 1 2n+1
Proof. Using (2.1) and Lemma 2.1 we see that
3t moo 3t
22 e(5) G~ 1) W BB ()
B 2e’ N 27" 2! +2e¥ 2¢
CeN el el e3’+1 S e¥—el+1
) 2n
t
= e =2 L U =2 L
Thus U, = 32"E2n( ). Now applying Lemma 2.2 we deduce the remaining result. O
Theorem 2.2. For two sequences {a,} and {b,} we have the following inversion formula:
[n/2]
b, =2 Z (Zk)an w—a, (n=0,1,2,...)

w2l
= Uniby —0.1.2,..).
— a k;() <2k) kbn—ok  (n )



Proof. Ttis clear that
s (S = (102 ) (Lom)
- Z (2[’5 <2k)“” 2% “”)L

Thus, using Lemma 2.1 and the fact U,—; = 0 we see that

/2]
by —22(2k)an w—a, (n=0,1,2,...)

w2
= a, = <2k)U2kbn2k (I’l:O,],Z,...).

This proves the theorem. O

Theorem 2.3. Let n be a nonnegative integer. For any complex number x we have

[n/2]

0 Y (g )l 1 e 12—
k=0
e

(ii) Yy <2k) Une (X H 4 (x+3)""2) = (x+1)" 4+ (x +2)",
k=0
VBl n 2k 2%

(iii) ) <2k> Un((x+3)" " = (x=3)"")
k=0

=(x+2)"+(x+1)"—(x—1)"—=(x—=2)".
Proof. From the binomial theorem we see that

(/2]
2k X _1\n n__
22 <2k)xﬂ =@x—1)"+(x+1)"—x"

Thus, applying Theorem 2.2 we deduce (i). Since
=+ D"+ (x+2)"+ x+ )" = (x+2)"+ (x+3)" =x"+ (x+3)",

from (i) we deduce (ii). As X"+ (x+3)" — ((x = 3)" +x™) = (x+ 3)" — (x — 3)™, from (ii)
we deduce (iii). So the theorem is proved. O]



Theorem 2.4. For n € N we have

/2, "
@) Y (2k>(2”— DUy =1-U,,
k=0
(-1)/2 /
(ii) ) (2k>6n‘2kU2k5"+4"2"1,
k=0
(iii) Uy = 1427 — o (21 322
m=1+ Z ok 3 Unx,
n/2
(iv) Uy =2(—1)"—4 Z <4k> — 1)Uz,
~ 1+v 3 /3]
(v) Uy =4"""+ = Z (6k> 3% Un—ek,

where V,, is given by Vo =2, Vi = 1L and Vi1 = Vi — TV (m > 1).

Proof. Taking x = 1 in Theorem 2.3(i) and noting that U,, = 0 for odd n we obtain (i). Taking
x =3 in Theorem 2.3(iii) we deduce (ii). Taking x = 0 in Theorem 2.3(ii) and then replacing n
with 2n we derive (iii). Set i = +/—1. By Theorem 2.3(i) we have

n 2
Z ( n) U (i — )22k _ =2k gy 1)2n—21<) _pn

= \2k
That is,
" /On _ _
) Ui ((—2i) (=14 20" F) = (1)
o \2k
Hence , )
2n n—k 2n
Uy (271K =17 —1 Uy = (—1)"
L (G)umten® —e ¥ ()= -n)
2|n—k 24n—k
Therefore
3 2n n+1—k n—k _ n < 2n n 1
kgb (2k)U2k(2 (-1)7 —=2)=(-1) —kz(,) ok Usy = (—1) _EUZn
2|n—k
and so
"/ 2n N n,l
2y’ 5 Un—2r((—1)22"=1) = (-1) U2
r=0
2|r

This yields (iv).
Set ® = (—1++/—3)/2. From Theorem 2.3(ii) we have

Z( )Uzk( )2"*2’<+(3m+3)2"*2’<):(3m+1)2"+(3m+2)2"



It is easily seen that V,, = (%)m + (%)m =(2430)"+(—1—-3w)" and

2 if3|n—k,

2n—2k 2n—2k 2n—2k 2\2n—2k
(@+1) (@) {0)+0)2:—1 if3fn—k.

Thus . .
2n\ on—2k 21\ Lon—ok

3 3Ky — 3
by (Zk) 21 (5 ”
3|ln—k

L)

-y (ZD U ((30) 2+ (30+3) )
k=0

=Bo+ D+ Bo+2)" =V,,.

Hence, applying (iii) we deduce

k=0

3|k

_ o (20 Jon—k _ o (21 qon—ok

=Y <2k)3 Un= Y )3 Ut Vo
3n—k B

= 1422 — Uy + Vo
This yields (v). The proof is now complete.
Lemma 2.3 ([3, p.30]). Forn € Nand 0 < x < 1 we have

n! & sin((2m+1)mx — )
E, =4.
,,(x) o+l mgo (2m+ 1)n+1

Theorem 2.5. Let n € N. Then

Y (e~ ) = VT
= (6k+1)2n+1 (6k+5)2n+1 2\@'32”(2}’1)!.

Proof. From Lemma 2.3 and Theorem 2.1 we see that

(_1)HM
4.32n.(2n)!
BT y sin(25-4 7 — nm)
4.(2n)! = (2m+ 1)t
_ i sin 57 V3 i ( 1 1 )
= (2m 1)t 2 =\ (6k+ )2 (6k+5)2F 1)
This yields the result.

Corollary 2.1. For n € N we have (—1)"U,, > 0.



3. Congruences involving {U;, }

Theorem 3.1. Let p be a prime of the form 4k + 1. Then

p—1

3) (mod p) if p=1 (mod 24)
1 L
—4BpT (g) (mod p) if p=5 (mod 24),

4B 41 () (mod p) if p=13 (mod 24),
1

3
1231,+1( ) (mod p)  if p=17 (mod 24).

3
By [8, Theorem 3.2(i)] we have

1
—4B "—(5) (mod p) if p=1 (mod 12),
2
h(=3p) = i
4B, (g) (mod p)  if p=5 (mod 12).
2

Now combining the above we deduce the result. O

Corollary 3.1. Let p be a prime of the form 4k+ 1. Then p1U,_: .
2

Proof. From [10, p.40] we know that h(~3p) = 2¥. /3 (2) Thus 1 < h(=3p) < p. Now the
result follows from Theorem 3.1. O]

For an odd prime p and a € Z with pfalet g,(a) = (a’~' —1)/p denote the corresponding
Fermat quotient.
Theorem 3.2. Let p be a prime greater than 5. Then

) E =220~ 3053)+ plan2 + 10y BR) — $(8)0p 3 (mod ),
(ii) [:éj]llc = _%qp(3) + 4P‘]p(3)2 P(%)UP—’» (mod p?),

(i) i”z/f} CF=9 Z:; L =3p(§)Up-3 (mod p?)

(iv) We have e



#5003 =3(5)Un-s) (mod )

and

(—1)8] (”[g}l> =1+ %pqp(:;) 1 %pqu@)z -£ <§)U,,,3 (mod p?).

Proof. From Theorem 2.1 and Fermat’s little theorem we have

22r241)-6"73 Bypoa(g) 1

= —Bp,g(é> (mod p).

U7 =
r3 27341 p—2 30

Now applying [9, Theorem 3.9] we deduce the result. O

Theorem 3.3. Let p > 3 be a prime and k € {2,4,...,p—3}. Then

(p/6] 1 p—1 1 6k(2k+1)
p
— =6 —_= —)U - d
L x; X 4(2’<—1+1)(3 p-1-k (mod p)
6lx—p
and
[p/3] 1 p—1 1 6k
LR S S ) A,
Lok T Ak Tk \3) !  (mod p)
3lx—p

Proof. Let m € {3,6}. As Bp_k(mT_l) = (—I)P*kBp_k(%) = —B,,_k(%), we see that
B,«({£})=(%)Bp—«(L). Now putting s = 1 and substituting k with p— 1 —k in [8, Corollary
2.2] we see that for k € {2,4,...,p—3},

[p/m]l:[p/zm]xp—l—": B, «(0)—B,«({2}) :7(5)3,,_,((%)
= = Pt TR

x=1

1 p—1 s —l—k[ m s 1 [p/m]
3 = 3 xP =(—m)? Z’I r = ; — (mod p)
”’ﬁx_—p ”’ﬁx_—p = *

By i(§) 14201k B 1427
p—k 2@ 4 n)er 1RO = iy e £ Up-1-k (mod p)
and X
B, «(3) Up—1-k Up—1-«
Pk 23 TR 1) - 23 k@i kg (medp)
Now putting all the above together we deduce the result. O



Corollary 3.2. Let p > 3 be a prime and k € {2,4,...,p—3}. Then

/3 4 1ok )
L F = a ()Y (mod )
and - » N
1 1 /oy | /3 1
L= 27:_* Z — (mod p).
o VA S e B N

Remark 3.1 For a prime p > 5 the congruence ZX”:/ ; x% = %Z[” / 16 ] % (mod p) was first

found by Schwindt. See [5].
Theorem 3.4. Let p > 3 be a prime and k € {2,4,...,p—3}. Then

(p/3] 1 3/ p
Y (0 == (5) Up-1k (mod p)

and

P
N 1 3k )
Z’l (2x—1)k =Tk g (g)Up—l_k (mod p).
x=

Proof. Putting m =3 and s = 1 in [8, Corollary 2.2] and then replacing k£ with p — 1 —k we

see that
4 p
Epflfk(o) (-1 )[I]Ep 1 k({3})
(p/3] (p/3]
=2(-1)P LY (R =2 Z (mod p).
By (2.4) and (2.5) we have

2012798,

=0.
p—k

Epflfk(o) =
From (2.5) and Theorem 2.1 we have
Ep717k<{§}> E,_4 k<3> =31y, =30, (mod p).

Observe that (—1)!5] = = (£). From the above we deduce the first part. Since

wIs

(2] [Lﬁ]
1 5] 4 1
(-1 7 ; x; (2x— 1)k’

applying the first part and Theorem 3.3 we deduce the remaining result. [

X:

Corollary 3.3. Let p be a prime of the form 4k + 1. Then

1
Upt = —2(24(-1)") Z (

X

fol) (mod p).

10



Proof. Taking k = (p—1)/2 in Theorem 3.4 and applying Euler’s criterion we obtain

(28] 3y
2x—1 (2)(5) 1
Z(x )E_ P Uy =— U, (mod p).
e B 4 4+2(5) 2 442(-1)T 2
This yields the result. O

4. Congruences for Uy(,_1),, (mod p")

Theorem 4.1. Let n € N with n > 3, and let o be a nonnegative integer such that 2* | n. Then
U = % (mod 2%t4). Moreover,

2
485+ = (mod 2%t/
Uz,, = 3 ( )

48n+422 (mod2’)  if21fn.
Proof. From Theorem 2.4(i) we have
n

y @Z) (227 1)Uy =1 — Uy,

Thus, using (1.1) we see that

2n

C 202k "o (20 1
E 27Uy = 1 E Uy =1—=Uy,.
k=0 <2k> * " k=0 (Zk) * 27?

Hence

"2

UZn—222< n)zer2n2r

r=0 2r

and so
2 " /2n 2 2n 2n—1\ 4"

4.1 n:7<1f 4’Un,,>:ff— Usn_ay-
(%0 U =3 r;l(zr) nr) T 33 <2r—1) 2

From the definition of Uy, we know that 2 | Uy, for m > 1. Thus, for | <r <nandn > 2 we
have 4—:U2n,2, =0 (mod 8) and so 2n - 4%Uzn,zr =0 (mod 2%*4). Therefore, by (4.1) we have
Uy =3 (mod 2%+4) and hence Uy, = 6 (mod 16) forn > 2.

n 7 n—3 .
Since 2 T € 7, for n > 3, we see that ‘; = 2 47 =0 (mod 2%*7). Thus, using

(4.1) and the fact U, = 6 (mod 16) for m > 2 we see that forn > 3,

2 2y " 2n—1\ 4! 4n
=24 Usa-2r =222 220 = 1)+ =)
t 3 3( Z(Zr—l) roo? ( )Jrn

r=1

2n ") foan—1)\ 47!
=——- -6
3 Z}(Zrl) r

r=

11



:—16n( n—1+2( 5 )+Z<2r_1>4rrl)
16n(2n1+2(2 3_1)) (mod 2%+7).

It is clear that

2n—1+2(2”3_1>

9(2n—1+2(2”;1>)

=302n—1)2n+(2n—3)%) =3(2n—1)(2n+1)
=3(2n—1)>4+6(2n—1)=4n—3 (mod 8).
Thus,
2
Uz — 3 = —16n(4n—3) = 48n+32(1 — (~1)") (mod 2047,
This yields the result. O

Corollary 4.1. Let n € Nand n > 3. Then
Uy, =6 (mod 16) and Uy, = —16n—42 (mod 128).

Theorem 4.2. Let p be an odd prime and b € {0,2,4,...}. Then f(k) = (1 —
(%)pk(p’l)er)Uk(p_le is a p-regular function.

Proof. Suppose n € N. From Theorem 2.1 and (2.3) we have

2% _,
D2etbyyy,  — p2kHb 3Utbp, b( ) _ 32k+b i <2k+b> (7 1 )2k+b £

3
_ zkib (2k+b)(—3)rE, _ i <2k+b> (=3)E,

r=0 r r=0 r

:"2;(2k+b)(2k+b— 1) (2k+b—r+1) (_j)rE, (mod 3").

Since E, € Z and 3" /r! € Z3, there are ag,ay,...,a,—1 € Z3 such that
224U = A K" - ark +ag (mod 3") forevery k=0,1,2,

Hence, using [6, Theorem 2.1] we see that 22k+b Usiap 18 @ 3-regular function. As
n 1 n
y <"> (—1)kp~2k=b —p=b (1 - 7) = 0 (mod 3"),
= \k 4

we see that 272¥? is also a 3-regular function. Hence, using the above and the product theorem
of p-regular functions (see [6, Theorem 2.3]) we deduce that f(k) = Up is a 3-regular
function. Therefore, the result is true for p = 3.

12



Now let us consider the case p > 3. For x € Z), let (x), be the least nonnegative residue of
x modulo p. Since 2 | b we have p — 11 b+ 1. From [6, Theorem 3.2] we know that

Kp=1)+bg,

ey
Bi(p—1)+p11(3) — P (=11 (3 < 3>’)

k(p—1)+b+1

fi(k) =

is a p-regular function. As

1, p-1
tE 1
3 3 : _
=— if p=1 (mod 3),
%+<_%>p: p 3 ( )
p 1yl
%:5 if p =2 (mod 3)

and By(p—1)4p41(5) = (=D B 1y 1(3) = —Bigp-1)40+1(3), we see that

1
_ PN\ k(p—1)+b Bi(p—1)+b+1 (§)
k)=(1- -
At =(1-(5)r )k(p—l)—HH—l
By Theorem 2.1 and the above we have

1
— (1= (2) prlr=1+b) (o) (K= 1)+b+1 K(p1)+b Brtp=)+b+1(3)
f=(1-(5)r )22 +1)3 Kp—1)+b+1

_ _2(2k(p—1)+b+1 + l)3k(p—l)+bf1 (k)

Since

n

Z (Z) (_1)]{(2]{([771)4»/74’1 + 1)3k(p71)+h — 26/1(1 _6]771)}1_’_3/7(1 _3F71)Vl =0 (mod pn)7
k=0

using the above and the product theorem of p-regular functions (see [6, Theorem 2.3]) we
deduce that f(k) is a p-regular function, which completes the proof. O

From Theorem 4.2 and [8, Theorem 4.3 (with t = 1 and d = 0)] we deduce the following
result.
Theorem 4.3. Let p be an odd prime, k,m,n € Nand b € {0,2,4,...}. Then

(=5

ol (k=1=r\ [k P\ oy o
=L () () 0 () i tmoa )

In particular, for n =1 we have Upg(ymy4p = (1 — (£)p")Us (mod p™).
From Theorem 4.2 and [6, Theorem 2.1] we deduce the following result.
Theorem 4.4. Let p be an odd prime, n € N, p > nand b € {0,2,4,...}. Then there are

unique integers dap,dy,...,a,—1 € {0,£1,+£2,..., i%} such that

(1 B (%)pk(pil)%) Uk(p—1)+b = an1 K" -+ ark +ag (mod p")

13



forevery k=0,1,2,.... Moreover, ordyas > s — ord,s! fors =0,1,...,n—1.
Corollary 4.2. Let k € N. Then
(i) Uy = —3k+1 (mod 27);
(ii) Uy = 1250k* 4 500k> +725k> — 1205k +2 (mod 3125) (k > 2);
(iii) Ugrro = 1250k* — 1125k> — 675k* — 52 (mod 3125).
From Theorem 4.2 and [8, Corollary 4.2(iv)] we deduce:
Theorem 4.5. Let p be an odd prime, k,m € N and b € {0,2,4,...}. Then

- p _ Py
Uk(p(p’”)er = (1 7kpm 1) (1 — (g)pb) Ub +kpm ! (1 — (g)pp 1+b) Up—1+b (mOd pm+1).

5. {(—1)"U,,} is realizable

If {a,};_, and {b,};_, are two sequences satisfying a; = by and b, +aib,—1 +---+
ay—1by = na, (n > 1), following [7] we say that (a,,b,) is a Newton-Euler pair. If (a,,b,)
is a Newton-Euler pair and a, € Z for all n = 1,2,3,..., then we say that {b,} is a Newton-
Euler sequence.

Let {b, } be a Newton-Euler sequence. Then clearly b, € Z for all n = 1,2,3,.... In [2],
{=by} is called a Newton sequence generated by {—a, }.

Lemma 5.1. Let {b,};_, be a sequence of integers. Then the following statements are
equivalent:

(i) {bn} is a Newton-Euler sequence.

(ii Zd\n#(%)bd =0 (mod n) for every n € N.

(iii) For any prime p and o.,m € N with p { m we have bype = b,, a1 (mod p%).

(iv) For any n,t € N and prime p with p' || n we have b, = bu (mod p").

(V) There exists a sequence {c,} of integers such that by, =Y g, dcq for any n € N.

(vi) For any n € N we have

ki 1 k
bbby €.
b2k btk kK2R ket ek )
(vii) For any n € N we have
by by by by
-1 by b by 1
1 2 b .. byaleg
n! . . .
—(n— 1) bl

Proof. From [1, Theorem 3] or [2] we know that (i), (ii) and (iii) are equivalent. Clearly (iii)
is equivalent (iv). Using Mobius inversion formula we see that (ii) and (v) are equivalent. By
[7, Theorems 2.2 and 2.3], (i),(vi) and (vii) are equivalent. So the lemma is proved. O

Let {b,};_, be a sequence of nonnegative integers. If thereisasetX andamap 7 : X — X
such that b, is the number of fixed points of 7", following [1,4] we say that {b,} is realizable.

14



In [4], Puri and Ward proved that a sequence {b, } of nonnegative integers is realizable if
and only if for any n € N, % Yajnt1(}7)ba is a nonnegative integer. Thus, using Mobius inversion
formula we see that a sequence {b,} is realizable if and only if there exists a sequence {c, } of
nonnegative integers such that b, =Y, dc, for any n € N. In [1] J. Arias de Reyna showed
that {E,, } is a Newton-Euler sequence and {|E,,|} is realizable.

Now we state the following result.

Theorem 5.1. {U,} is a Newton-Euler sequence and {(—1)"Uy,} is realizable.

Proof. Suppose n € N and o = ordyn. If 2 | n, by Theorem 4.1 we have Uy, = % (mod 2%+4)
and U, = % (mod 2%3) for n > 6. Thus U,, = % = U, (mod 2%) for n > 6. For n = 2,4 we
also have Uy, = U, (mod 2%). If 2 { n, by (1.1) we have U, = 0 = U, (mod 2°).

Now assume that p is an odd prime divisor of n and n = p'ng with p 1 ny. Using Theorem

4.3 and the fact 2ngp’~! > t we see that
Uon = Uppopr = U2n0¢(pt)+2n0pr—l = Uznopt—l (mod pt).

By the above, for any prime divisor p of n we have Uz, = Us,/, (mod p'), where p' || n.
Hence, it follows from Lemma 5.1 that {U, } is a Newton-Euler sequence.
By Corollary 2.1 we have (—1)"U,, > 0. Suppose that p is a prime divisor of n and p' || n.

If p is odd, then (—1)" = (—1)%. If p=2and 4 |n, we have (—1)" = (—1)3. If p=2
and 2 || n, then (—1)" = (—1)2 (mod 2). Thus, we always have (—1)" = (—1)% (mod p").
By the previous argument, we also have U, = U/, (mod p'). Therefore, (—1)"Uz, =
(—1)%U2n/p (mod p"). Hence, by Lemma 5.1 we have %Zd‘n,u(%)(—l)dUZd € Z. Now it
remains to show that Zd‘n,u(g)(—l)dUgd >0.

For m € N, by Theorem 2.5 we have

24332 2m)! & 1 1
(=1)"Um = V3 2 1( ") Z( 2mil 2 1)'
Tt =\ (6k+ 1)2mHT (6k+5)2m+

Since

> 1 1 & 1 1
L ((6k+ 1)2mtl (6k+5)2m+1) =1-) ((6k+5)2m+1 - (6k+7)2m+1> <1

k=0 k=0
and
DY (S R PR SN
= (6k—|— 1)2m+1 (6k+5)2m+1 52m+1 55
we see that ) 5
4 2+/3-37".(2m)! 24/3-3“".(2m)!
. M < (_1)’”U2m < M
5 T m+1 n2m+l
Hence
n d n n d
=)= 2d = (— 2n =)= 2d
Y u(5) (=1) Waa = (=1)"Uan + GCRY
din d|nd<%
> (=1)"Usy — (—1)"Vaq



4 2¢/3-3%".(2n)! 2v/3-3%.(2d)!
5

m2n+1 (e m2d+1
4 2y3-3".(2n)! & 2v/3-3%.p!
75T e - d; 2d+1
83

M n!{(ngz)n(n—i—1)(n+2)~~~(2n)—i-19/;/;2}.

For m € N it is clear that

(%)mﬂ(mu)(m%)---(2m+2) = %(4m+2). (%)m(m+l)(m+2)...(2m)

> %)m(m+l)(m+2)~~(2m).

~—~ a3

Thus, for n > 3 we have

5 9/n?

(%)n(n+l)(n+2)m(2n) > <%>3~4-5~6> P T

and so ):d‘,,,u(g)(—l)dUzd > 0. This inequality is also true for n = 1,2. Thus, {(—1)"U,,} is
realizable. This completes the proof. O

Let {a,} be defined by
ap=-2 and na,=Uy+aUpyo+--+a,1Uy (n=2,3,4,...).
By Theorem 5.1 we have a, € Z for all n € N. The first few values of a, are shown below:
ar =13, a3 = —224, a4 = 8170, as = —522716, ag = 51749722, a7 = —7309866728.
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