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1. INTRODUCTION

In this paper we study the properties of linear recursive sequences and give some applica-
tions to matrices.

For a,, a, € Z, the corresponding Lucas sequence {u,} is given by u,=0, u, =1, and u,,, +
au, +au, =0 (n>1). Such series have very interesting properties and applications, and have
been studied in great detail by Lucas and later writers (cf. [2], [4], [6], [10]).

The general linear recursive sequences {u,} is defined by u, +au,_, +---+a,u,_, =0 (n=0).
Since Dickson [2], many mathematicians have been devoted to the study of the theory of linear
recursive sequences. More recently, linear recursive sequences in finite fields have often been
considered; for references, one may consult [3], [5], [7], [8], [11], [12], [13], [16], [17], and [18].

In this paper we extend the Lucas series to general linear recursive sequences by defining
{u,ay,...,a,)} as follows:

Uy == U, =0, %=1,

u,+au, \+--+au, ,=0 (n=0,%1,+2, ),

(1.1)

where m22 and a,, #0.

We mention that sequences like (1.1) have been studied by Somer in [12] and [13], and by
Wagner in [15].

In Section 2 we obtain various expressions for {u,(a,, ..., a,)}. For example,

|
un(al’ oo am) = .(.IH_""_);(_I)kl'L..-{-kmalkl v a’l;"'
ky+2ky+ - +mk,=n 1* m >
m ln+w1
0,12,..
Z H(A l n b ’2) )’
J#i

where A,, ..., A,, are all distinct roots of the equation x™ +a,x™ ' +-:- +a,, = 0.
The purpose of Section 3 is to give the formula for the powers of a square matrix and further
properties of {#,(a,, ...,a,)}. The main result is that

3:1(2 ) (12)

r=0 \ s=r

where u, =u (a,,...,a,) (n=0,+1,£2,...) and 4 is an m x m matrix with the characteristic poly-
nomial agx™ +ax™ +--- +a, (a,=1).

Formula (1.2) is a generalization of the Hamilton-Cayley theorem, and it provides a simple
method of calculating the powers of a square matrix.

Let 4,,..., 4,, be the roots of the equation X" +ax™ +-+a,=0, u,=ua,..,a,), and
s, =M +--+ A% (n=1,2,3,...). In Sections 2 and 3 we also show that
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LINEAR RECURSIVE SEQUENCES AND POWERS OF MATRICES

n m
Z S, , =nu, and s, = —Z kau, . (1.3)
k=1

k=1

We establish the following identityin Section 4:

k! m=1 (m—-1 k.
Yins1 = z WH Zas—run-s Uy (1.4)
kg+ky+ o +kp =k 07 M1 m=1°r=0 \ s=r 2.k, +1
r=0

where u, =u.(a,, ...,a,) and g, =1.

For later convenience, we use the following notations throughout this paper: Z denotes the
set of integers; Z* denotes the set of positive integers; | 4| denotes the determinant of A; and
{u,(ay,...,a,)} denotes the sequence defined by (1.1).

2. EXPRESSIONS FOR {u,(a,,...,a,)}
In this section we establish some formulas for {u,(a,,...,q,)}.

Lemma 2.1: Let a, ..., a, be complex numbers with a,, # 0. For any n € Z, we have

1 a,;, a 1
u,(a,..,a,)=-——u_, ,|—=Lt L —]|
" ’ o am —n am ,am am
Proof: Let
a 1
-1 1
V,=u, | 2= — —1 and u,=——v
n n(am’ ’am’am) n » n—m
Since v_,, =---=v_=0,v_, =-a,v,=-a,, weseethat 4_, =---=u_, =0, u,=1. Also,

u,+au, +--- +au, .,

= -] — +.‘ﬂ_ +...+am—1

- a, Ver-m a, Von-m+ a, Vo TV,
=0 (n=0,£1,£2,..).

Thus, u, =u,(a, ...,a,) foranyne Z.

Theorem 2.1: Let a,, ..., a, be complex numbers with a,, # 0. Then the generating functions of
{u,(ay,..,a,)} and {u_,(a,, ...,a,)} are given by

i !
ula,..,a,)x" =
n\**1» s“m m
jowr I+ax+:--+a,x
and
-] m
x
u_(a,..,a)x" =1- .
—n\"1s > “m m m-1
= x"+ax" "+ +a,

Proof: Letu,=u,a,,...,a,), ay=1,and a, =0 for k >m. Then

(S Eor)-§ (S

n=0 n=0 \k=0
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Observe that a,,,) =---=a, =0 for n>m and that u,_,=---=u_ =0 forne{l,2,...,m-1}. So

we have

n m
Zaku k= Zaku =0 forn=123,..,
k=0 k=0

and therefore,

(i u,,x")(i akx") =aguy =1.
n=0 k=0

It then follows that

i u,x" = 1

0 l+ax+:- +a,x"

From the above and Lemma 2.1, we see that

n=1 n=m m m
1 moo | q 1 k
:_a_x Zuk a_’ a_,—a_ X
m k=0 m m m
X" 1
== ”

This completes the proof.

Corollary 2.1: Let ay=b,=1 and (X} ja,x") (X5 ,b,x")=1 For m=1,2,3,..., we have b, =

n=0

ua,....,a,).

Proof: Since the coefficient of x” in (1+ax+---+a,x™+---)"! is the same as the coeffi-

cient of x™ in (1+ax+--+a,x™)", by using Theorem 2.1 we get b,=u,a,...,

completes the proof.
We remark that Corollary 2.1 gives a simple method of calculating {b,}.

Theorem 2.2: Let a,, ...,a, be complex numbers with a,, # 0 and

m
X"+ax™ !+ ta, x+a,=[[(x-4).

i=1
{(a) Forn=0,12,..., we have
u(a,..,a)= Y AAg Ao
ky+ky+--+k,,=n
k+---+k,)!

= z —.(_l)kl+"'+kmalkl ...akm_
AR m

2k + - +mk,=n
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(B) Forn=m,m+1,m+2,..., wehave

u_n(al,...,am):—i Z S S

k k,
An Kyt +k, = n—-m Af e Am

(k1+"'+km)!( 1 Jk1+...+k,,,+l -
= Z ——— | — al’"

k
- g

‘m—1-
k! k! a

ky+2ky+ - +mk,=n—-m m

Proof: Since 1+ax+---+a,x"=(1-4,x)--+(1- 4,x), by Theorem 2.1, we have

o« i l m o0 kok
> u,(a, ..., a,)x =|| = > Ax
(1 ) 1*l-x =1( J

k=0

( > A ---l’ﬁ;;')x”.

3

n=0 i=1 i i

1M

k+-+k,=n
This implies
Ky ak k
ua,..,a,)= > APAG A,
kytky+-tk,=n
From Theorem 2.1 and the multinomial theorem, we see that

- 1
I+ax+---+a

m

0 o0
Zun(al, s @ )X" — = Z(—l)’(a1x+ < t+a,x™y
=0 X r=0

0 , a0 r' n
:Z(—l)z Z ____k'“.k ,a{cl...a’];m X
r=0 n=0 { ky+2ky+---+mk,=n "1° m*
PR
= i M(_l)kl+'"+kmalkl ...a’ﬁm x"'
n=0 \ k| +2k,+---+mk,=n kl' km|
Thus,
[
u(a,..,a,)= Z ——(k1+ +k"')'(—l)kl+ o a{“ oeghm,
" k' k, ”
ky+2ky 4 +mk,=n 1 m
This proves part (a).
Now consider part (b). It follows from Theorem 2.1 that
- 1 1

u_(a,..,a,)x"=-x"
n=m

(x-4) (x-4,)
I Ve D WU W - 4 B Y ' ¢
- ﬂq"'ﬂ'm (l—i) (1—*"—)_ amg(g)(l)]

| & 1 ky 1 Km
=—@Z( ) (Z (T)

n=m\ ky+---+k,,=n—-m

Therefore, we have
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1 1
u_n(al,...,am)=—3~ Z W foran.
M gtk =n-m A1 A,

By Lemma 2.1 and part (a),
u_(a,..,a,)= —iu,,_m (g—’"‘—l, R ,i)

fhd O
ay, a, " a,

__1 (ky+- k) ek, [ Ay k',, 1 Y
- 2 AR D (—a_ Aa, | -

B kyH2ky 4 +mk, = n~m
Hence, the proof'is complete.

Remark 2.1: Let x"+ax™ ' +.--+a, =(x-A;) - (x-1,). If {u,(a,..,a,)} is given by its
generating function, by Theorem 2.2(a) we have
u(a,...a)y= >  BAlgHm (n20), 2.1
ky+ky+ -k, =n
as was found by Wagner [15].
Suppose a, =1 and a, =0 for k ¢{0,1,...,m}. Using Theorem 2.1 and Cramer's rule, one
can prove the following facts:

(a) Forn=123,..., wehave

q o - q
u(ay, .., a)=(-1"| @ % gl 2)
a2—n a:i—n o al
() Forn=m+1,m+2,..., we have
. A, Ay, D
u_(a,..,a,)=|-— I Gn1 0 Damonit | (2.3)
a, : : .. :
A,y dy3 L

Here, (a) is well known (see [9]) when {u,(q,, ..., a,)} is given by its generating function.

Theorem 2.3: Let a,, ...,a, be complex numbers with a,, 20, and 4, 4,,..., 4,, be the distinct
roots of the equation x™ +ax™ ! +-.- +a, = 0. For any integer n, we have

m
u,(a, ...,am)zz

i=1

A’H'm—

(ﬂ /1)

i

3 :s

Proof: Consider the following system of m linear equations in m unknowns x;, x,, ..., X,
X +x, 4 +x,=0
A+ A%+ +4,x, =0
24

Al + A i+ + A0, =0

Al A ey e+ A0 = 1
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Since (2.4) is equivalent to

—
—
—

R
o

L A, A X, 0
ot x| o
Attt AN x, 1

1 1 0 1 1
1 A, Ay 04 A,
X, = v—————— . .
R [ (O 0 ) S S
ZARRE e i WP SO o
1 - 1 1 1
— =™ Avo A A o 4,
H(/lr~ls) : : : oo
A e e B
- G0 174, -4)= (=12, m).
H(/1 =) s II(A, =4, T
r>s r, s#i J#E
FornelZ, set
n An_-i-m—-l
u, = ;
i=1 H(ﬂ't l])
J#i
From the above, we see that u_, =---=u_ =0, u, =1 Also,
m ln—l ” -
u,+au _1+-o-+amun_m=2—(1—ls(ﬂ +aq A7 + - +a,,)

=0 (n=0,+1,+2,..).
Thus, u, = u,(a,,...,a,) forn=0,+1,+2, ... This completes the proof.
For example, let {S(n, m)} be the Stirling numbers of the second kind given by

x"= iS(n,m)x(x—l)~~(x—m+l).
m=0

It is well known (see [1]) that

S, m)——i( ) D" = Zm: m.- forn>m=>1.
i=0 i i=1 (I_J)
I

J=_
i

Thus, for n>2m=>1, S(n m=u,_,(a,..,a,), where a,, ...,a, are determined by(x — 1)(x-2)---
(x—-m)=x"+ax™ ' +...a, From this, we may extend the Stirling numbers of the second kind
by defining S(n,m)=u,_,(a,,...,a,) forany n € Z and m e Z7*.
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Remark 2.2: Suppose that the equation x™+ax™ ' +:--+a, =0 has distinct nonzero roots 4,

.e» A, and that {U,} satisfies the recurrence relation U, +alU +-+a,U, ,=0(n=m). Itis

well known (see [1]) that there are m constants c,, ..., c, such that U, =gA] +c, Ay + - +c, A},
forevery n=0,12,....

Ifa,#0 and x" +ax™ ' +.--+a, =(x—A)"--(x—A4,)", where 4,,..., 4, are all distinct,
then using Theorem 2.1 we can prove that

w
w(ay...a,) :aiz z(" —J- ”")( s I ('),1"“"1 (n>0), 2.5)

=1 j=0
where

)

S#i

and fU(x)= %S—xl

Theorem 2.4: Let a,, ..., a,, be complex numbers with a,, 0, X" +ax™ "+ +a, = (x - A)) -+
(x-2,), s,=Aj+ A4+ + A, and u, =u(a,...,a,). Forn=123,. ., wehave

n n
Zsku —k = N, and Zs—kuk—n—m =hHu_p_ .

k=1
Proof: Since
5 1 -1 -1 -1
— ux" = =(1-Ax) (1-Ax)"-(1-1,%x)",
S = e = (= 2= A (1= )
we have

Iogiu,,x” —Zlog(l Ax)= iil’;x":is,,x .

n=0 i=l n=1 n=1

By differentiating the expansion, we get

That is,

(g Snx")(i u,,x") = gnu,,x".

n=0
Comparing the coeficients of x” on both sides gives
n
D Selhy_y =N,
k=1

To complete the proof, by the above and Lemma 2.1 one can easily derive

Z S_p Uy = NU_py_ .
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3. THE FORMULA FOR THE POWERS OF A SQUARE MATRIX

This section is devoted to giving a formula for the powers of a square matrix. First, we
derive an explicit formula for companion matrices and then give a formula for arbitrary square
matrices.

Theorem 3.1: Let qa,,...,a, be complex numbers with a, 20, neZ, and u,=u,(a,,...,a,).
Then

0 —a, Y 1 aq a,
1 0 -a,_, 1 a a,_, u, Uy Uy em-1
1 = ‘. . un.—l u.n un+.m—2
0 -q a; : ' ;
1 -a, 1 Upemil  Un_me u,
Proof: Let
0 -a,, 1 g a a,
1 0 -a,,_, 1 q a, ,
A= 1 ‘ R D= ‘. . ,
4 q
and
u, Uy v Uyeme
Mn = un—l un o un+m—2 .
un—.m+1 un—;n+2 - u,
Since u,_,, =---=u_; =0 and u, = 1, we see that DM, = A°.
Clearly, M, A= M,,, forany k € Z. Therefore, forn=1,2,3,..., we have
M,=M, A=M, ,A*=..-= M,A"
and
M, =M,  A"'=M A7 == MyA™"

From this, it follows that
DM, = DMyA" = A" and DM_,=DMyA™ = A™",
which proves the theorem.

Remark 3.1: Let {u,a,...,a,)} be given by its generating function. For n>0, the result of
Theorem 3.1 is known (see [9]).

Corollary 3.1: Let a,,...,a, be complex numbers with a,,#0, n€Z, and u, = u,(a,,...,a,).
Then

u, Uy o Upm
Uy u, vt Uema | (__ l)mnan
. . . - me
Uy mr1 Up_mi2 u,
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Proof: Let A, D, and M, be the matrices as in the proof of Theorem 3.1. It is clear that
|4| =(-1)"a,, and |D|=1. Thus, taking the determinant of both sides of the identity A" = DM,
gives the result.

Clearly, Corollary 3.1 is a vast generalization of the known fact that F; I_F F. =),
where {F,} is the Fibonacci sequence.

Corollary 3.2: Let a,, ..., a, be complex numbers with a,, # 0, x™ +ax™ o ta,=(x— 1)
(x-4,), neZ, u,=ula,..,a,),and s, = 1+ Ay +---+ A, Then

m
S = _Z kakun-k
k=1

Proof: Suppose that 4 is the companion matrix in Theorem 3.1. Then x™ +ax™ !+ +a,
is the characteristic polynomial of A and hence 4,, ..., 4,, are the eigenvalues of 4. From matrix
theory, we know that the eigenvalues of 4" are A}, A%, ..., 4},. Denote the trace of the matrix C
by tr(C). Then, by the above and Theorem 3.1,

s, = X+ A+ e+ A = tr(A") = te(DM,)

m—i

_Z(Zaku,, k)_z(m K, ,

=-—ma,u, ,— Z kakun—k = _Z kakun—k
k=0 k=1

This proves the corollary.

Theorem 3.2: Let A be an m x m matrix with the characteristic polynomial z ,(x) = ax™ +ax™"'

+-+a,, a,#0,neZ, and u, = u,(a,...,a,). Then

=5 (Soon o

r=0
Proof: For n € Z and arbitrary numbers v, ..., V,._;, set
m-1( s
-3 (S Jor
=0 \r=0
Then
m m-1( s m
Zakv‘_k = Z (Za,_,v,)Zaku k=0 (n=0,£1,%2,.). 3.1
k=0 5=0 \r=0 k=0
Since a, =1 and u_; =---=u;_, = 0, we see that
n K] n n n=1{n
V; = Z (Z as—rvr)un Z (Z s—rtn-s )Vr =V, + Z (Z as—run—s)vr
5s=0 \r=0 r=0 \(s= r=0 \s=r

1 3.2)
n—=1 { m+r
:vn+z (Za:—run—s)vr=vn (n=0, 1,...,m—l),

r=0 \ s=r

Hence, {v'} is uniquely determined by (3.1) and (3.2).
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From the Hamilton-Cayley theorem, we know that 4™ +alA""1 +-+-+a,l =0, where ] is the
m x m unit matrix and O is the m x m zero matrix. So, forneZ, A"+a A" '+ +a,4"™=0.
If we set A" = (a(" Ymxsm , then
a”+aal ™+ +a,al™ =0 (n=0,%1,£2,..).
Applying the above result, we get

m=1{m-1
ai(;l) = Z (Zas—rat(jr)J Z (Z s, n—s)a(r) ] = 1’ 2’ ’m)

s=0 \r=0 r=0 \s=r

Hence,

m=1{ m-1
-5 (S o
r=0 \ s=r

The proof is now complete.

Since #,_,, =---=u_; =0 and u,=1, we see that au,_, +:+a, ,_u = if 0<r<

m—1-r -r

m—1. Thus, the Hamilton-Cayley theorem is a special result of Theorem 3.2 in the case n=m.
We remark that the result of Theorem 3.2 provides a very simple method of calculating the

powers of a square matrix.

Corollary 3.3: Let p be an odd prime, a,b,¢,d € Z, p{ad —bc, A = (a—d)? +4bc. Then
I (modp) if (4)=1,
(@ 8 Paletr moap (-
(ad-bc)l (modp) if (4)=-1,
where I is the 2 x 2 identity matrix and () denotes the Legendre symbol.

Proof: Let u =0, uy=1, and u,,, = (a+d)u, - (ad - bc)u,,_l (n=0,1,2,...). Then u,=
u,(—a—d,ad - bc). Since the characteristic polynomial of (¢ }) is x* - (a +d)x +ad —bc, using
Theorem 3.2 we see that

bY b 10 ~du,_,  bu,
(‘; d) —u, (‘c' d)+(u,,—(a+d)un_l)(0 1):("»16“”_”; v —uauln_l)' (33)
Clearly, A = (a +d)* - 4(ad —bc). Thus, by [10, pp. 46-47],

(s )_O(modp) pl_( )(modp).

Putting the above together yields

o

r-(3)
(" 3) = u, ! (modp)

If (4)=1 then Uy (a) =My =(%)=1 (mod p). If (8)=-1, then u, ,=—1 (mod p) and
u, =0 (mod p). Thus, Up (8) = Upyy = (a+d)u,—(ad -beyu,, | = ad —bc (mod p).
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If (5) =0, then p|A. Using Fermat's little theorem, we see that

1 {(a+d+JA Y (a+d-JA Y
e TN T N 2 ) U 2

2 +1 - _
= 2P+1%(pk )(‘H'd)p 7Y

2 d
= s +a+d) = % (mod p).

Combining the above produces the desired result.

4. AN IDENTITY FOR {u,(a,, ..., a,)}
Using Theorems 3.1 and 3.2, one can prove the following identity.

Theorem 4.1: Let a,,...,a, be complex numbers with a, #0, a,=1, and u,=u(a,,...,a,).
Then, for n,/ € Z and k € Z*, we have

m-1 {m-1 K,
Uenir = Z k |k ' IH (Z S—1 n—sj Zrk +l

k0+k]+"'+km—l_k m -1° r=0 r
r=0

Proof: Let A, D, and M, denote the matrices as in the proof of Theorem 3.1. It is clear that
the characteristic polynomial of 4 is x™ +alx’”'l +---+a,. So, by Theorem 3.2,

From this and the multinomial theorem for square matrices, it follows that

k
L. (z(z ”nsj JAI

k m=1 (m=1 ke Erk,u

R WH(Z ) A=

ko+k|+...+k m-1* r=0
Multiplying both sides on the left by D! and then applying Theorem 3.1, we see that

m=1 (m— k,
Mkn+l = Z W‘ H (Z a, U n—s) Zrk +l

kotky+ -tk =k m 1° r=0 \s=r

Now, comparing the elements in row 1 and column 1 of the matrices on both sides yields the
result.

Corollary 4.1: Let a, and a, be complex numbers with a, #0. If {U,} is the Lucas sequence
givenby U, =0, U, =1, and U, +aU,_ +a,U, , =0 (r=0,+1,%2,...), then

k : .
Upnst = 2, (’f)(—azU UL, .1

i=0
where n,/ €Z and k € Z*.
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Proof: Note that U, =u,_i(a,,a,). By taking m=2 in Theorem 4.1 and then replacing / by
/-1, we obtain the result.

Remark 4.1: When n,/>0 and a, = a, = -1, the result of Corollary 4.1 was established by my
brother Zhi-Wei Sun [14]. (In the case / = 0, the result is due to Siebeck [2, p. 394].) Here I give
the following general identity,

k
’ k i s —ir7e
Ul = X4 U0, Ut “2)
i=0
where {U}} satisfies the recurrence relation U, +aU/_, +a,U!_, =0 (n=0,£1,%£2,...). This can
be proved easily by using the relation U! = UJU, — a,U}U,_, and the known formula

B 1 [—al +,/al —4a, Jr (»al ~\Jat —4a, Jr
4a,

- 2 2

Corollary 4.2: Let ay,...,a, be complex numbers with a, #0, a,=1, and u,=u,(a,,...,qa,).
For n, l € Z, we have

5[

r=0 \ s=r

Proof: Putting k =1 in Theorem 4.1 yields the result.

Corollary 4.3: Let p be a prime, a,,...,a, €Z, pla,, LneZ, a;=1, and u,=u,(a,,...,a,).
Then

m=1 m-1

unp+l Z Z .v—r n—-s rp+l (mOdp)

r=0 s=r
Proof: It ky+---+k, ,=p,then

p! _{1 (modp) ifp=k, forsomere{0,...m—1},

k'-k, 1 |0 (mod p) otherwise.

This, together with Theorem 4.1 and Fermat's little theorem, gives

m=1 {m-1 P
uan = Z Z s—-r n—: urp+l
r=0
m-1 m-1
EZ Za:—run U rp+l (mOdp)
r=0 s=r

which is the result.

REFERENCES

1. R. A Brualdi. Introductory Combinatorics, pp. 99-125. New York, Oxford, Amsterdam:
Elsevier North-Holland, Inc., and North-Holland Publishing Company, 1977.

2. L. E. Dickson. History of the Theory of Numbers. Vol. I, Ch. XVII. New York: Chelsea,
1952,

3. H. T. Engstrom. "Periodicity in Sequences Defined by Linear Recurrence Relations." Proc.
Nat. Acad. Sci. U.S.A. 16 (1930).663-65.

350 [AauG.



LINEAR RECURSIVE SEQUENCES AND POWERS OF MATRICES

. D. H. Lehmer. Annals of Math. 31.2 (1930):419-48.
. R. Lidl & H. Niederreiter. Finite Fields, pp. 394-469. London and Amsterdam: Addison-
Wesley, 1983.

6. E. Lucas. "Théorie des fonctions numériques simplement périodiques." Amer. J. Math. 1

(1878):184-240.

W. Mantel. "Residues of Recurring Series." (Dutch) Nieuw Arch. Wisk. 1 (1894):172-84.

M. d'Ocagne. "Mémoire sur les suites réecurrentes.” J. de I'Ecole Polytechnique 64 (1894):

151-224.

9. G.Polya & G. Szegd. Problems and Theorems in Analysis. Vol. II, Ch. VII, 11.1, 32. New
York: Springer-Verlag, 1972.

10. P. Ribenboim. The Book of Prime Number Records. 2nd ed., pp. 44-50. Berlin: Springer-
Verlag World Publishing Corp., 1989.

11. E. S. Selmer. Linear Recurrence Relations over Finite Fields. University of Bergen, 1966.

12. L. Somer. "Periodicity Properties of k*'-Order Linear Recurrences Whose Characteristic
Polynomial Splits Completely over a Finite Field 1." In Finite Fields: Theory, Applications,
and Algorithms, pp. 327-339. MR95k:11018. Las Vegas, Nevada, 1993.

13. L. Somer. Finite Fields and Applications, pp. 333-347. MR97m:11022. Glasgow, 1995.

14. Z. W. Sun. "Reduction of Unknowns in Diophantine Representations." Science in China
(Ser. A) 35(1992):1-13.

15. C. G. Wagner. "Generalized Stirling and Lah Numbers." Discrete Mathematics 160 (1996):
199-218.

16. M. Ward. "Some Arithmetical Properties of Sequences Satisfying a Linear Recursion Rela-
tion." Ann. of Math.32 (1931):734-38.

17. M. Ward. "The Arithmetical Theory of Linear Recurring Series." Trans. Amer. Math. Soc.
35 (1933):600-28.

18. N. Zierler. "Linear Recurring Sequences." J. Soc. Indust. Appl. Math. 7 (1959):31-48.

AMS Classification Numbers: 11B39, 11B50, 11C20

S

W oL

® =

Fgig30 Is Prime

David Broadhurst and Bouk de Water have recently proved that Fy, 4, is prime.
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