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Abstract

Let Z be the set of integers, and let p be a prime of the form 4k+1 and so p = ¢®>+d?
with ¢,d € Z. Let ¢ be an integer of the form 4k +3. Assume that 4n?p = x? 4 qy? with
¢,d,n,z,y € Z and (¢,n) = (x,y) = 1, where (a,b) is the greatest common divisor of
integers a and b. In this paper we establish congruences for (—¢)®/# (mod p) in terms
of ¢,d,n,z and y, where [] is the greatest integer function. In particular, we establish
a reciprocity law and give an explicit criterion for (—11)P/8 (mod p).
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1. Introduction

Let Z be the set of integers, i = v/—1 and Z[i] = {a + bi | a,b € Z}. For any
positive odd number m and a € Z let (=) be the (quadratic) Jacobi symbol. For
convenience we also define (1) = 1 and (-%.) = (;-). Then for any two odd numbers

m and n with m > 0 or n > 0 we have the following general quadratic reciprocity law:

(1) = (=1)"7 5 ().

For a,b,c,d € Z with 2 { ¢ and 2 | d, one can define the quartic Jacobi symbol

. . n —bi S\ —1
(gig§)4 as in [9,10,12]. From [6] we know that (gig§)4 = (Z—Zi)4 = (3132)4 , where
Z means the complex conjugate of z. For m,n € Z (not both zero) let (m,n) be the
greatest common divisor of m and n. From [9,11,12,13] we have the following properties
of the quartic Jacobi symbol:

(1.1) ([12]) Let a,b € Z with 2{ a and 2 | b. Then
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(1.2) ([12]) Let a,b,c,d € Z with 2 { ac, 2 | b and 2 | d. If a + bi and ¢ + di
are relatively prime elements of Z[i], we have the following general law of quartic

reciprocity:
(a—i—bi) _( 1)%_c;1+%.a+l2771 (C—l—di)
c+di/a a—+bi/a

In particular, if 4 | b, then (‘C‘IZ)4 = (—1)a51'% (21%)4.

(1.3) ([2], [9, Lemma 2.1]) Let a,b,m € Z with 2 { m and (m,a® + b*) = 1. Then
(52)% = (=)

(1.4) ([llanemma 4.3]) Let a,b € Z with 2 { a and 2 | b. For any integer x with
(z,a% + %) = 1 we have (:25;)4 = (52%2)-

(1.5) ([13, Lemma 2.9]) Suppose ¢,d,m,x € Z, 2 { m, x> = ¢* + d* (mod m) and
(m,z(2 + d)) = 1. Then (&£%), = (Zztd))

For the history of quartic reciprocity laws, see [6,7]. Let p be a prime of the form
8k+1,q € 7Z,24%qand p1q. Then ¢ is an octic residue (mod p) if and only if
¢P=Y/8 =1 (mod p). In the classical octic reciprocity laws (see [1,7]), we always write
that p = ¢ + d? = a® + 2b* (a,b,c,d € 7).

For a prime p = 24k +1 = 2 + d?> = 22 + 3y? with k,¢,d,z,y € Z and ¢ = 1
(mod 4), by using cyclotomic numbers and Jacobi sums Hudson and Williams ([4,5])
proved that

p—1

{ +1 (mod p) ifc=+(—1)T (mod 3),
38 =

d
£ (mod p) if d=+(—1)1 (mod 3).

Let p be a prime of the form 4k + 1 and so p = ¢ + d? with ¢,d € Z, ¢ = 1 (mod 4),
d = 2"dy and dy = 1 (mod 4). Suppose ¢, 7,y € Z, 2t q, pt q and p = 2% + qy*.
Assume that (¢, +d) = 1 or (dp,z + ¢) = 1. In [13], using (1.1)-(1.5) the author
deduced some congruences for ¢//8l (mod p) in terms of ¢, d, z and y, where [a] is the
greatest integer not exceeding a.

In 1890 Stickelberger (see [3,8]) proved the following elegant theorem.

Theorem 1.1 Let Q(y/—¢q) be an imaginary quadratic field of discriminant —q and
class number h. Assume that ¢ # 3,4,8. Let p be an odd prime such that (_?q) = 1.
Then there are integers , %, unique up to sign, for which 4p” = 22 4 qy? and p { z.

For ¢ € {11,19,43,67,163} and an odd prime p with (%) = 1, it follows from
Theorem 1.1 that 4p = 22 + qy? for some z,y € Z.

Inspired by [13] and Theorem 1.1, in this paper we establish congruences for
(—q)P/8 (mod p) under the condition that p = ¢ + d? and 4n’p = x? + qy?, where
p=1 (mod 4) is a prime and ¢ = 3 (mod 4). In particular, we establish a reciprocity

law and give a useful and explicit criterion for (—11)P/8l (mod p), see Theorems 2.3-
2.5.

2. Main results

Theorem 2.1. Let p be a prime of the form 4m+1 and so p = ¢* +d?* with ¢,d € 7Z
and ¢ =1 (mod 4). Suppose that ¢,n,z,y € Z, ¢ =3 (mod 4), p1{q, 4n’p = 22 + qv?,



y=1 (mod 4), (¢,n) = (z,y) =1, (¢,x+2nd) =1 and (Wh =i*. Then

(—) T 4
C

()RR L mod ) 8-,

, )F7" (mod p) if8|p—1,
(—g)ls =

Proof. Clearly (n,z)? | 4n?p — 22 and so (n,7)? | qy?. Since (¢,n) = (z,y) = 1
we get (n,z) = 1. Note that (y,n)? | 2 and (z,5) = 1. We also have (y,n) = 1.
Since 4n%p = 22 + qy?, (x,4) = 1 and p { ¢ we see that 2 { 2 and p { . Thus
(7, (2cn)? + (z + 2dn)?) = (z,4n%p) = 1. As qy?® = (2cn)? + (z + 2dn)(2dn — x) we
see that (qy, = + 2dn) | 4c®>n?. Recall that (qy,n) = 1 and (c,x + 2dn) = 1. We get
(qy,x + 2dn) = 1. Also,

(ay°, (2en)* + (x + 2dn)?)

= ((2en)? 4 (z + 2dn)? — 2z(x + 2dn), (2cn)? + (z + 2dn)?)
= (2z(x + 2dn), (2¢)? + (z + 2dn)?)
= (x4 2dn, (2¢)* + (z + 2dn)?) = (z + 2dn,4c*) = 1.

= 2! (;mod 2). Now using

Sincenp—qﬂ—l—m_l*l—y 7\
(1.1)-(1.4) and the fact that( )a =1 for a, mEZWlthQTmand (a,m) =1 we see

that
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= (71)Ln+—7jn.(71)%—1.%( T ) (71)%“%}(04—(&)4

c+di/a Y
= (S () 0T (),
= (c1) T .(_1)3”2‘1 +H[2H (Ci/de) <c+dz)
R e S et ] (A R
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As (z2z) = (CQZdQ) = (2 (y+d )) = ( qu )= (?2) = 1, from the above we deduce
that / ,
/Yy —(_ ( d) +z 1 d e 17*1+[i1] k—mn
<c+di)4 (=1) (1) e
Clearly (_1)§ = (—1)p4;1 and ¢ = d/c (mod ¢+ di). Since ¢+ di or —c — di is primary
in Z[i], we have
b

() =),

Note that (z/y)? = —¢ (mod p) and p = (c + di)(c — di). We then have

o . 22— k—n
(—1)EF e egt g el 1(%) (mod ¢ + di).

() = (- D SRR (D (mod )
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Since (—1)% = (—1)174;1 we deduce the result.
Theorem 2.2. Let p be a prime of the form 4m+1 and so p = ¢* +d?* with ¢,d € Z
and ¢ =1 (mod 4). Suppose that ¢,n,z,y € Z, ¢ =3 (mod 4), p1{q, 4n’p = 22 + qv?,

y=1 (mod 4), (¢g,n) = (z,y) =1, (d,x+2cn) =1 and (wh = i¥. Then

n n(z+n) z2-1 d .
o G (modp) 8 |p -1,
(—q)tsl = o1, 221 netn) d..y )
(-1) =z 7= 2 (E) o (mod p) if8[p—5.

Proof. By the proof of Theorem 2.1, 24z, p{ and (n,xy) = 1. Thus (z, (2dn)* +
(x + 2cn)?) = (z,4n%p) = 1. As qy?> = (2dn)? + (z + 2cn)(2cn — ) we see that
(qy, z+2cn) | (2dn)?. Note that (qy,n) = 1 and (d, z+2cn) = 1. We get (qy, z+2cn) =
1. Since (n,z + 2cn) = (n,z) = 1 and (d,z + 2cn) = 1 we see that

(qy?, (2dn)?* + (z + 2cn)?)

= ((2dn)? + (x + 2cn)? — 2z(x + 2cn), (2dn)* + (z + 2¢n)?)
(2x(z + 2cn), (2dn)? + (z + 2cn)?)

= (x4 2cn, (2dn)* + (x + 2cn)?) = (x + 2cn, (2dn)?) =



Now using (1.1)-(1.4) and the fact that (%), = 1 for a,m € Z with 2 {m and (a,m) =1
we deduce that
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Thus, applying (1.5) we see that
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Clearly i = d/c (mod ¢+ di). Since ¢+ di or —c — di is primary in Z[i], we have
() =)
Yy - \c+di/a

Note that (z/y)? = —¢ (mod p) and p = (c + di)(c — di). We then have
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This is the result.



Theorem 2.3. Let p be a prime of the form 4k+1 and so p = ¢* +d? with c¢,d € Z
and c =1 (mod 4). Let q be a prime of the form 4k+3. Suppose that 4n’p = z% + qy?,
n,z,y € Z, y =1 (mod 4) and (¢,n) = (z,y) = 1. Assume that (¢c,x + 2dn) =1 or
(d,x +2cn) =1. Then for m € Z,

n(z+n) @ d m .
)M ET (modp) i8],

—
|
=)
N—
Il

n(z+n) x ndm .
(1)) (mod p) if 8| p—5

2n(c — di)\
= (M) Y =i™ (mod q).
x
Proof. Clearly ¢ 1 z and z is odd. We first assume (¢,z + 2dn) = 1. By the
proof of Theorem 2.1, (q, (x 4+ 2dn)((2cn)? + (x + 2dn)?)) = 1. It is easily seen that

2en/(@42dn)—i _ 2en—(z+2dn)i _ 2n(c—di) (mod ¢). Thus, for m € Z applying [9, Theo-

2¢en/(x+2dn)+1 2cn+(z+2dn)i — i

rem 2.3(ii)] we get

(20n/(x+2dn) —i—z') 4+l

A =1 4
q
2(52[ —1 %1 g+l 2n(c—di) % g+1
z;cnn . =" (mOd Q) <~ < - > =" 1 (HlOd q)
z+2dn t v
2n(c — di)\ 5
& (TL(CJUZ)> Y =™ (mod q).
Now applying Theorem 2.1 we derive that
i)
<72n(c dZ)) Y =™ (mod q)
x
2_
()T od ) i8],
(-t I Eym e L od ) i 8 | p— 5.
c x
Since n?p = qul + m24_1 + y24_1q we see that n = n’p = %1 (mod 2). Hence,
(DI = (-l — (21)"57 (mod p). Therefore,
i)
<72n(c dl)) Y =™ (mod q)
x
z—1 z271 n+1 d
St 2ym
()
n(z+n 127 d
, = ()TFHEE (mod p) if8 | p—1,
= (_Q)[E] = 2 Cd
(1)t SymY
¢’
| e @mY (noa p) i85 | p— 5.
¢’

Now we assume (d,x + 2cn) = 1. By the proof of Theorem 2.2, (q,z + 2cn) =

(q,(2dn)? + (z + 2cn)?) = 1. It is easily seen that gggtgigizgz = Qn(f;di) (mod q).




Thus, for m € Z applying [9, Theorem 2.3(ii)] we get
2dn - g+1

(—2dn/(:v +2cn) + z> _me %ﬂ =™ % (mod q)
q 4 - T
+2
2dn + (x + 2cn)iy\ 5 a1 o
( ) =i{"""2 (mod q)
2dn — (x + 2cn)i

2n(c — di

& (7271(6 — dl)) w m— )> s =4i" (mod q).

— i 2 (mod q) & (

T

,J;

ac—l 1 x
Note that (4 )T = (- ) = (—=1)" (mod p) and (—1)z = (=13, From
the above and Theorem 2.2 (with &k = m — q+1) we deduce the result, which completes
the proof.

Example 2.4. Let n = p = 29 and ¢ = 59. As 29 = 5% + 22 and 4 - 293 =
1592 + 59 - 352, we have c = 5, d = 2, z = 159, y = —35 and (d,z +2cn) = 1. It is
clear that

(M)f _ (58(?5_9%))15 = (—34+13)5= (19— 17)° = (mod 59)

and

159420 11594 99 2 . ;35 d 29
2 1 5 159 (mo )

(—g)8l = (=59)* = -1 = (-1)

Thus, Theorem 2.3 is true in this case.
Corollary 2.5. Let p be a prime of the form 12k + 1 and so p = ¢ + d? =
%(xQ +27y?) with ¢,d,z,y € Z. Suppose c =y =1 (mod 4). Assume (c,x +2d) = 1

or (d,z +2c) =1. Then

+(—1)!E (mod p) ifp=1 (mod8) and x = +c (mod 3),
:F(—l)[%]g (mod p) ifp=1 (mod8) and x ==+d (mod 3),
(-3)) = 213y
+(— ; (mod p) ifp=5 (mod8) and x ==+c (mod 3),
\ :F(—l) % (mod p) ifp=>5 (mod8) andxz==+d (mod 3).

Proof. If z = #c (mod 3), then d*> = p — ¢ = 4p — 22 = 27y?> = 0 (mod 3)
and so 3 | d. Thus, 29 = 2¢ = 49 = 51 (mod 3). If ¢ = +d (mod 3), then

T
A =p—d®=4dp— 2% =27y° :0 (mod 3) and so 3 | ¢. Thus, @ = %di = 414
(mod 3). Now taking ¢ = 3, n = 1 and replacing y with —3y in Theorem 2.3 we deduce
the result.
Corollary 2.6. Suppose that the conditions in Theorem 2.3 hold. If q | cd, then

( (71)@"’% (£1)" (modp) if8|p—1andx==+2cn (mod q),

_p) e (qig)% (mod p) if8|p—1and x ==+2dn (mod q),

- (-1 el ($1)”% (mod p) if8|p—>5 and x ==+2cn  (mod q),
(‘UMI?M)H%(ig)qu% (mod p) if8|p—"5andx==+2dn (mod gq).
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Proof. Since 4n?(c? + d?) = 22 + qy* we see that ¢ | d & x = +2cn (mod ¢) and
q|ce = +2dn (mod q). If z = +2cn (mod q), then M = +1 (mod q). If

x = £2dn (mod q), then M = Fi (mod ¢). Now applying Theorem 2.3 and the
fact % =n (mod 2) we deduce the result.

Theorem 2.7. Let p be a prime of the form 4k+1 and so p = ¢® +d? with ¢,d € Z
and c =1 (mod 4). Let q be a prime of the form 8k+7. Suppose that 4n’p = %+ qy?,
n,z,y € Z, y =1 (mod 4) and (¢,n) = (z,y) = 1. Assume that (¢c,x + 2dn) =1 or
(d,x +2cn) =1. Then for m € Z,

)" (modp) i#8|p-1,
"2 (modp) if8|p—5

= <c—dz:)q§15im (mod q).

Proof. Since 4n’p = 22 + qy> = 1+ 7 =0 (mod 8) we see that 2 | n. Observe that

(212)8:(222_;?;14 = (2O (moa )

The result follows from Theorem 2.3 immediately.

Remark 2.8 Under the conditions in Theorem 2.7, for d # 0 (mod ¢) we see that
(—q)?/® (mod p) depends only on ¢/d (mod g).

Example 2.9 Let p = 257, n = 2 and ¢ = 31. As 257 = 12 4+ 162 and 16 - 257 =
1924+ 31-11%2, we have c=1, d = 16, = = 19 and y = —11. Since

(1—16i)4_ (—255—32¢>2: (7+i)2_ U4Ti_ 140 4 (mod 31)
1+16i) \“255+32i) ~\7-i) " 2a—7m_ —1-i ' )

by Theorem 2.7 we have

1
=~ 1(16) =16%-16=—16 (mod 257).

257] _

(=31)ls

Actually (—31)[%'] = 3132 = 1208 = 8% = —16 (mod 257).
Corollary 2.10. Suppose that the conditions in Theorem 2.7 hold. If ¢ = +d
(mod q), then

n, z2— q
e Y SEDE (modp) #8|p-1,
_q 8l =
n x d q .
(—1)5"'[1}(:':5) =Y (mod p) if 8| p—>5.

Proof. Since ¢ = +d (mod ¢) we see that < c+dz = iijrz = Fi. Now applying

Theorem 2.7 we deduce the result.

Theorem 2.11. Let p be a prime of the form 4k+1, p=1,3,4,5,9 (mod 11) and
sop=c*+d = 1(2? + 11y?) with ¢,d,z,y € Z, ¢ =1 (mod 4), d = 2"dy(2 1 do),
y = 2o and dy = yo =1 (mod 4). Assume that (c,z +2d) =1 or (dy,x + 2¢) = 1.
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(i) If p=1 (mod 8), then

+(—=DE (mod p) if 212 and x = +4¢,4£9¢  (mod 11),
( )p71 :I:(—l)[%]g (mod p) if 242 and © = +4d,+9d (mod 11),
—11) s = -
F(-DEHE (mod p)  if 2|2 and 2 = +£4¢,£9¢  (mod 11),
qi(—l)[%]+%g (mod p) if2|x and v = £4d,4+9d (mod 11).
c
(ii) If p=5 (mod 8), then
r z?—
F(-1) s Y (mod p) if2tx and v = +4¢,+9¢  (mod 11),
x
22—
s F(-1)"5 1% (mod p) if 24z and x = +4d, £9d (mod 11),
_ g =
:F(—l)%g (mod p) if 2| x and x = +4¢,+9¢  (mod 11),
x
-5 d
:F(—l)%ﬁ (mod p) if 2|z and x = £4d,+9d (mod 11).

Proof. As (%)% = ¢? +d? (mod 11) and (c — di)® = ¢(c? — 3d*) + d(d? — 3¢%)i, we
see that
(2(0 - dz’))3 _ {:Fl (mod 11) if x = +4¢,49¢  (mod 11),

T ¥ (mod 11) if z =44d,+9d (mod 11).

When 2 { z, from the above and Theorem 2.3 (with n = 1 and ¢ = 11) we deduce
z/2—1

the result. When 2 | z and p = 1 (mod 8), we have 8 | y and so (—1)%Jr 2 =

T 2_ x/2— z
(_1)%+% = (—1)[51. Thus, applying the above and [13, Theorem 4.1 (with
g = 11)] we obtain the result.

Example 2.12. Let p = 449 = (—7)? + 20%. Then 4p = 392 + 11 - 52. Since

(=7,394+2-20) = 1 and 39 = —4 - (—7) (mod 11), by Theorem 2.11(i) we have
(—11)"5 = —(=1)[%) = 1 (mod 449). Actually, 128 = —11 (mod 449).
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