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Binary quadratic forms and sums of triangular numbers
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1. Introduction. Let Z and N be the set of integers and the set of
positive integers, respectively. For a,b,n € N let

tn(a,b) = {{z,y) :n=ax(z—1)/24+by(y — 1)/2, z,y € N}|.

For convenience we also define tg(a,b) =1 and t_,,(a,b) = 0 for n € N. Let

Wlg) = ¢"* D2 (g <1).

k=1
Then clearly
(1.1) P(g)(q?) =14 tu(a,b)g”  (lg| < 1).
n=1
Ramanujan conjectured and Berndt proved ([I, pp. 302-303]) that
=/ —28 q"
1.2 = — 1
(12) (@) Zj( )T <,

where (%) is the Legendre-Jacobi-Kronecker symbol. According to Berndt
([M), (1.2) is of extreme interest, and it would appear to be very difficult
to prove it without the addition theorem for elliptic integrals. By (1.1), the
equality (1.2) is equivalent to

(1.3) tn(1,7)= ) (Z;)
kln+1, 2tk

In [5,[7, 8] K. S. Williams and the author proved (1.3) and so (1.2) by using
the theory of binary quadratic forms.
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Let Z2 = Z x Z = {{z,y) : x,y € Z}. For n € N and a,b,c € Z with
a,c> 0 and b — 4ac < 0 let
(1L4)  R(ab.din) = [{(z.y) € 22 s n = ax® + bay + ).

In [5] the author proved the following result.

THEOREM 1.1 ([5, Theorem 2.1 and Remark 2.1]). Let a,b,n € N. Then

R([ a—l—b] 2n—|—a1_b)—R<[a,0,b],2n—|—a1—b>
if4|a+0,
4t,(a,b) = atb
R({Qa 2, ]4n+ ; > ifdla+b—2
R([4a, 4a, a+b] 8n +a+b) if 24 a+0.

Moreover, if 2+t ab and 8|a + b, then

R([a,0,0],2n + (a + b)/4)
_{0 if 2¢n+(a+0)/8,
L R([a,a, (a +b)/4],(8n +a+b)/16) if 2|n+ (a+b)/S.

For 20 values of (a,b), the explicit formulas for ¢, (a,b) are known. See
Table 1.1.

Table 1.1

tn(a,b) References for formulas for ¢, (a, b)

tn
tn

Legendre [4]
,tn(1,7) Ramanujan, Berndt [T}, 2], Williams [§]
), tn(3,5) Sun, Williams [7]
Sun [5, Theorem 3.1]
Sun [5, Theorem 3.2]
Sun [5, Theorem 3.3]
]
]
]
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[
) Sun [5, Theorem 3.5
) Sun [5, Theorem 3.6
n(1,37) Sun [5, Theorem 3.7]
n(1,11) Sun [5, Theorems 4.1 and 4.2]
tn(1,19),t,(1,43) Sun [5, Theorem 4.1]
) I
) I
) [
) [

tn(1,67),t,(1,163) Sun [5, Theorem 4.1]

tn(1,27 Sun [5, Theorem 4.3]
tn(1,23 Sun [5, Theorems 4.4 and 4.5]
tn(1,31 Sun [5, Theorem 4.4]
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In this paper, by developing the theory of binary quadratic forms we
completely determine ¢,(a,b) for 123 more values of (a,b). See Table 1.2.
We also show that to,—2(7,9) — tan—s(1,63), ton—2(5,11) — ton,—7(1,55) and
ton—2(3,13) — toy—5(1,39) are multiplicative functions of n € N.

Table 1.2

tn(a,b) Values of t,(a, b)
tn(1,0), tn(2,b/2) (b= 6,10, 22, 58) Theorem 2.2
tn(1,12),t,(3,4),tn(1,28),tn(4,7) Theorem 2.2
tn(1,18),t.(2,9) Theorem 2.4
tn(1,60), £n(3,20), tn (4, 15), £, (5, 12) Theorem 2.5
tn(1,45),t.(5,9) Theorem 2.7
tn(1,3b),t,(3,b) (b=17,11,19,31,59) Theorem 5.1
tn(a,6m/a) (a]6, m =5,7,13,17) Theorem 5.2
tn(a,10m/a) (a|10, m =7,13,19) Theorem 5.3
tn(1,85),tn(5,17) Theorem 5.4
tn(1,133),tn(7,19) Theorem 5.5
tn(1,253),t,(11,23) Theorem 5.6
tn(a,15m/a) (a|15, m =7,11,23) Theorem 7.1
tn(1,273), tn(3,91), tn(7,39),tn(13,21)  Theorem 7.2
tn(1,357), tn(3,119), tn(7,51), tn(17,21)  Theorem 7.3
tn(1,385), tn(5,77), tn(7,55),tn(11,35)  Theorem 7.4
tn(a,210/a) (a|30) Theorem 7.5
tn(a,330/a) (a]30) Theorem 7.6
tn(a,462/a) (a]42) Theorem 7.7
tn(a,1365/a) (a|105) Theorem 8.2
tn(1,8) Theorem 10.1
tn(1,63),t,(7,9) Theorem 10.2

A nonsquare integer d with d = 0,1 (mod 4) is called a discriminant.
Let d be a discriminant. The conductor of d is the largest positive integer
f = f(d) such that d/f? = 0,1 (mod 4). As usual we set w(d) = 1,2,4,6
according as d > 0,d < —4,d = —4 or d = —3. For a, b, c € Z we denote the
equivalence class containing the form ax? 4+ bxy + cy? by [a, b, ¢]. It is known
([B]) that

(1.5) [a,b,c] = [c, —b,a] = [a,2ak + b,ak* + bk + ] for k € Z.

Let H(d) be the form class group consisting of classes of primitive, in-
tegral binary quadratic forms of discriminant d, and let h(d) = |H(d)|.
For n € N and [a,b,c] € H(d) we define R([a,b,c],n) and N(n,d) =
> ken( R(K,n) as in [0]. In particular, when a > 0 and b? — dac < 0,
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then R([a,b,c],n) is given by (1.4). It is known that R([a,b,c|,n) =
R([a,—b,c],n). If R([a,b,c],n) > 0, we say that n € R([a,b,c]), n is repre-
sented by [a, b, ] or ax? + by + cy?, and write n = az? + by + cy.

Let n € N and let d be a negative discriminant such that h(d) = 4.
For m € N let (), be the cyclic group of order m. Then H(d) = Cy or
H(d) = CyxCy. If H(d) = C4 with generator A, for 50 such discriminants d,
in Section 9 we give explicit formulas for R(A,n). When H(d) = Cyx---xCo,
in Sections 2, 3, 4, 6 and 8 we determine R(K,n) for any K € H(d). As
applications, in Sections 2, 5, 7, 8 and 10 we deduce many explicit formulas
for t,,(a,b).

In addition to the above notation, throughout this paper [z] denotes the
greatest integer not exceeding x, p(n) denotes the Mdbius function, (a,b)
denotes the greatest common divisor of integers a and b. For a prime p and
n € N, ord, n denotes the unique nonnegative integer « such that p* || n (i.e.
p® | n but ptfn).

Throughout this paper p denotes a prime and products (sums) over p
run through all distinct primes p satisfying any restrictions given under the
product (summation) symbol. For example the condition p = 1 (mod 4)
under a product restricts the product to those distinct primes p which are
of the form 4k + 1.

2. Formulas for ¢,(1,b) in the cases b = 6,10, 12, 18,22, 28,45, 58, 60.
Let d be a discriminant and n € N. In view of [0, Lemma 4.1], we introduce

(21)  S(n,d) =) <Z>

k|n
H (14 ordyn) if 2|ordyn for every prime ¢ with (g) = -1,
) =t
0 otherwise.
We recall that N(n,d) =3 ke pq) RK, n).
LEMMA 2.1 ([6, Theorem 4.1]). Let d be a discriminant with conductor f.
Letn € N and dy = d/f%. Then

0 if (n, f2) is not a square,

o =g I (1= (7)) o)

if (n, f2) = m? for m € N.
In particular, when (n, f) =1 we have N(n,d) = w(d)d(n,dp).

As f(dp) = 1, by Lemma 2.1 we have N(n/m?,dy) = w(dg)d(n/m?, dy).
Thus, if (n, f2) = m? for m € N, using Lemma 2.1 we see that
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ea SR (050) M

plm

This is a reduction formula for N(n,d).
LEMMA 2.2. Let a,b,n € N with 2t n.
(i) If 21a and 41 (a — b)b, then
R([a,0,48], n) = {R([a,O, bl,n) if n=a (mod 4),

otherwise.
If2ta, 2|b and 8t b, then

R([a,0,4b],n) = {é%([a,O, bl,n) ifn=a (mod 8),

(ii) If21a+0b and 81 ab, then

otherwise.

R([4a, 4a, 0+ b],n) = {R([a,O, bl,n) ifn=a-+b (mod 8),
0 otherwise.
Proof. Suppose 2 { a and 4 { (a — b)b. Clearly n = ax? + 4by? implies
2 {2 and so n = a (mod 4). Now assume n = a (mod 4) and n = ax? + by?.
If 21y, then a — b = n — by? = az? (mod 4) and so 4| (a — b)b. This
contradicts the assumption. Thus n = az? + by? implies 2 |y. Therefore
R([av 0, b]? TL) = R([aa 0, 4b]a TL)
Suppose 2 { a, 2|b and 81 b. As (2m + 1)? = 1 (mod 8) we see that
R(la,0,48],m) = [{{z,5) € 7% : n = az® + by?, 2|y}
_ { R([a,0,b],n) if n=a (mod 8),
0 otherwise.
This proves (i).
Now let us consider (ii). Assume that 2{ a + b and 8 { ab. Then
R({da, 4a,a+b,n) = [{{z,9) € Z2 : n = a(2x +)* + by}
= {{z,y) € Z® :n = az® + by?, 2|z — y}|
= {(z,y) € 2?1 n = az® + by?, 2t ay}|.
As (2m+1)? =1 (mod 8), from the above we see that R([4a,4a,a+b],n) = 0
provided n # a+b (mod 8). Now assume n = a+b (mod 8). If n = ax?+ by?
with z,y € Z and 2| zy, then n = a,a + 4b,b or b+ 4a (mod 8). Since 8 { ab
we have a +b # a,a+4b,b, b+ 4a (mod 8) and so n # a+ b (mod 8). Thus,
if n = ax? + by? for some x,y € Z, we must have 2 { zy. Hence, from the
above we deduce R([4a,4a,a + b],n) = R(]a,0,b],n). So (ii) is true and the
lemma is proved.
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THEOREM 2.1. Let b € {6,10,12,22,28 58}, b = 2"by (2 1 by), n € N
and 2t n. Then

b L
R(L,0,48)m) = 4 222 <k> ifn=1(mod 8),

kln
0 otherwise,
—b
2 — ifn=>b+1 (mod 8),
R, 4,5+ 1], 1) = %&k) / (mod 8)
0 otherwise,
—b
2 — if n = by (mod 8),
R([2T+270, b(]],ﬂ) _ k:lzn < L ) f 0 ( )
0 otherwise,
—b
2 — ifn=2"+b d8
R([2T+2’ 27"+2’ 27" + b(]],ﬂ) _ Z < L ) an + 0 (mO );

kln
0 otherwise.
Proof. As2|b, 21bg, r € {1,2} and 2 { n, using Lemma 2.2 we see that

R 170, b y f 8 _ 1’
R([1,0,4b],n):{ (11,0.8)m) i 8-
0 otherwise,
R([22,0,bo],n) :{ (12,0, o], ) 3£ 8| = bo,
0 otherwise,
R([4747b+ 1],7’1):{ ([ » ]7’”‘) I n + (mo )’
otherwise,
R([27,0,bo),n) if n=2" + by (mod 8),
R([2r+2,2r+2,27“+bo],n):{ (I ol,n) ifn ' + by (mod 8)
0 otherwise.

It is known that H(—4b) = {[1,0,0],[2",0,bo]}. See [0, Table 9.1]. Clearly
n = x2 + by? implies n = 1,b + 1 (mod 8), and n = 2”22 + byy? implies
n = bp,2" + by (mod 8). Since 1,b+ 1, by, 2" 4 by are distinct modulo 8, we

see that
R([1,0,8], ifn=1b+1 (mod8),
¥ -ty = { TLOI) =L e )
R([27,0,b0],n) if n =bg,2" 4+ by (mod ).
Since f(—4b) € {1,4} and 2 { n, we have (n, f(—4b)) = 1. Hence, by Lemma

2.1 we have
N(n,—4b) = w(—4b) Y <_k4b> =2> (—;)

Now putting all the above together we deduce the result.

For b € {6,10,12,22,28,58} set b = 2"by (2 1 bp). From Theorem 1.1
we easily see that 4t,(1,0) = R([4,4,b+ 1],8n + b+ 1) and 4t,(2",by) =
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R([2712,27%2 27 4 bg], 8n + 2" + bg). Thus, applying Theorem 2.1 we deduce
the following result.

THEOREM 2.2. Let n € N and b € {6,10,12,22, 28, 58}.
(i) If b e {6,10,22,58}, then
1 —b 1 —b
W(1,0) = = - n(2,6/2) = = ).
tn(1,0) = > (k) and tn(2,b/2) = 3 > <k>
k|8n+b+1 k|8n+2+b/2
(i) If b e {12,28}, then
1 k 1 k
1,b) = - = 4) = - ).
wan =y ¥ () e wann-3 ¥ ()
k|8n+b+1 k|8n+4-4b/4
THEOREM 2.3. Let a,b,n € N.
(i) If81a, 84b and 4fa+b, then ty(a,b) = $R([a,0,b],8n +a +b).
(i) If21a,8|b—4 and4|a+b/4, thent,(a,b) = 1R([a,0,b/4], 8n+a+b).
Proof. Asz(z—1)/2=(1—2)(1 — 2z —1)/2, we see that
Atn(a,0) = [{{z,y) € Z* :n = a(z® — 2)/2 + b(y* — ) /2}]
= {(z,y) €Z® : 8n+a+b=a(2x —1)* + b2y — 1)*}
= |{(z,y) € Z* : 8n+a + b= az® + by?, 21 2y}|.

Let x,y € Z be such that 8n + a + b = az? + by?. When 2|z and 2|y, we
have 4 |8n+a+0band so 4 |a+b. When 2|z and 2t y, we have a = 8n+a =
az? + by? — b = ax? = 0,4a (mod 8) and so 8|a. When 2 { z and 2|y, we
have b = 8n + b = az? + by? — a = by? = 0,4b (mod 8) and so 8|b. Thus, if
8ta,81band 41a+b, by the above we must have 2 { zy. Hence,

4tn(a,b) = [{{z,y) € Z* : 8n +a+ b= az® + by?, 2t zy}]

= R([a,0,b],8n 4 a + b).

This proves (i).

Now assume 2 t a, 4|b, and 4|a + b/4. Set b = 4bg. Then 2 t by and
41 a—by. As 8n + a + 4by = ax?® + 4boy? (z,y € 7Z) implies 2 { zy, and
8n +a+ 4by = ax? + boy? (z,y € Z) implies 2 |y, from the above we deduce

4ty (a,b) = |{(x,y) € Z* : 8n + a + 4by = ax® + 4boy?, 2t zy}|
= |{(x,y) € Z*: 8n + a + 4by = ax® + 4boy’}|
= |{(z,y) € Z* : 8n + a + 4by = ax® + boy*}|.

This completes the proof.
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THEOREM 2.4. Letn € N and a € {1,2}. Then

1 —2 .

s X (%) s
k|8n+a+18/a

1 -2 )

5 Z <k> ’Lf 9 ’ n—a,
k|(8n+a+18/a)/9

0 otherwise.

Proof. Theorem 2.3 yields 4t,(a,18/a) = R([a,0,18/a],8n + a + 18/a).
As H(-72) = {[1,0,18],[2,0,9]} and f(—72) = 3, from [0, Theorem 9.3]
and (2.1) we see that

R(]a,0,18/al,8n + a + 18/a)

<1—(—1)a<8”3+a)> 3 (f) if 34 8n + a,

k|8n+a+18/a

=9, > (;8) if9)8n+a,

k|(8n+a+18/a)/9

tn(a,18/a) =

otherwise.
So the result follows.

REMARK 2.1. Theorem 2.2 can also be proved by using Theorem 2.3
instead of Theorem 1.1. When b € {6, 10,12, 18, 22,28,58} and 8n + b+ 1
is a prime power, the formulas for ¢,(1,b) have been given by the author
in [5, Theorems 5.1 and 5.3]. When b € {3,5,9,11,29} and 8n + b+ 2 is a
prime power, the formulas for ¢,(2,b) have been given by the author in [5]
Theorems 5.2 and 5.4].

For b € {5,13} set 4n + (b+1)/2 = b*ng (b { ng). Clearly the fact
that 2|ord,(4n + (b+1)/2) for every odd prime p with (%’) = —1 implies
(22) = Ty (320770 = Landso (3) = () = (5) = (-)OHD/2 = —1.
From this and (2.1) we see that Theorems 3.3 and 3.5 in [5] can be rewritten
as

(2.3) tn(1,5):% > (;5) and tn(1,13):% > <_kl3)

k|4n+3 k|dn+7
We also note that for a,b,n € N,

{(z,y) € Z* : n = a(22”® — x) + b(2y* — )}
= {(z,y) € Z® : 8n+a+b=a(dx — 1)* + b(dy — 1)*}
1
- Z|{<$,y> €Z?:8n+a+b=ax®+ by, 2t zy}| = tn(a,b).

THEOREM 2.5. Letn € N, a € {1,3,5,15} and 8n + a + 60/a = 3%ng
(3t mno). Then



Binary quadratic forms and sums of triangular numbers 265

e E(E) oo

tn(a,60/a) = i<1_(_1)a<7;o)> 3 (11‘?5) if a=3,5.

klno

Proof. From Theorem 2.3(ii) we see that 4t,(a,60/a) = R([a,0,15/al,
8n + a+ 60/a). By [0, Theorem 9.3] and (2.1) we have

R([a,0,15/a],8n + a + 60/a)

<1+(—1)a<?>> 3 (f) if o =1,15,

k:|30‘n0

= (1_(—1)6“(7?))]6%0(_;5) if a=3,5.

Now combining all the above with the fact that Z,ﬂg%o(_TlE‘) = kao(%)
we deduce the result.

THEOREM 2.6. Let n € N and n = 5%ng (51 ng). Then

-2
2 Z (]{;O> if 9|n and ng = +£1 (mod 5),

k|no/9
R([1,0,45|,n) = —20 )
([ J,n) 2;(k> if 3|m—1 and ny = £1 (mod 5),
no
0 otherwise,
2 Z <_20> if 9|n and ng = £1 (mod 5)
k; )
R([5,0,9],n) T
) ? 7n = -
22(1{:) if 3|n—2 and ng = =+1 (mod 5),
k|no
0 otherwise.

Proof. Tt is known that f(—180) = 3 and H(—180) = {[1,0,45], [5,0,9],
2,2,23],[7,4,7]}. If n =2 (mod 3) or n = +3 (mod 9), then clearly n =
22 4 45y? is insolvable and so R([1,0,45],n) = 0. If 9|n, then clearly

R([1,0,45],n) = R([1,0,5],n/9) = R([1,0,5],5%0/9)
= R([1,0,5],5“ ng/9) = --- = R([1,0,5],n0/9).
It is known that f(—20) = 1 and H(—20) = {[1,0,5],[2,2,3]}. Thus, if
ng = +2 (mod 5), then ny/9 = F2 (mod 5) and so R([1,0,45],n) =
R([1,0,45],n0/9) = 0; if ng = +£1 (mod 5), as ng/9 = 222 + 2xy + 33>
implies 2n¢/9 = (2z +y)? + 5% = +1 (mod 5) and so ng = £2 (mod 5), we
have R([2,2,3],n0/9) = 0 and so
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R([1,0,45],n) = R([1,0,5],n0/9) = N(no/9,—20) =2 > <_k20>

klno/9
Now we assume n = 1 (mod 3). Then 3 { ng. For m € N, 5m = x? + 45>
implies 5|z, and 5m = 5z% + 9y? implies 5|y. Thus R([1,0,45],5m) =
R([5,0,9],m) and R([5,0,9],5m) = R([1,0,45], m). Therefore,
R([1,0,45],n) = R([1,0,45],5%n0) = R([5,0,9], 50‘_1n0)

B {R([1,0,45],n0) if 2| a,

L R(j5,0,9],n0) if 210
If ng = 42 (mod 5), then ng cannot be represented by x2+45y? and 522 +9y2.
Thus R([1,0,45],n) = 0 by the above. Now suppose ng = +1 (mod 5).
It is easily seen that ng cannot be represented by [2,2,23] and [7,4,7].
Clearly ng = 2% + 4532 implies ng = 1 (mod 3), and ng = 522 + 9y implies
ng = 2 (mod 3). Since ng = 5 % = (—1)*n = (—1)* (mod 3), using the
above and Lemma 2.1 we see that

R([1,0,45], if ng=1 d 3),
R([1,0,45],n) = { ( bro) i =1 (mod 3
R([5,0,9],n0) if ng =2 (mod 3)

= N(ng, —180) _2Z< 20)

alno

= R([1,0,45],5% ng) =

Combining all the above we prove the formula for R([1,0,45],n). Since
R([1,0,45],5n) = R([5,0,9],n), replacing n with 5n in the formula for
R([1,0,45],n) we deduce the result for R([5,0,9],n). This completes the
proof.

THEOREM 2.7. Letn € N.
(i) If 4n + 23 =51y (5t ny), then

% Z (_1)(’%*1)/2 <§> if 9n—1 and n; = £2 (mod 5),

k|n1/9
to(1,45) =
( ) ’; 1)(k= 1/2<§> if 3|n and n; = +£2 (mod 5),
ni
0 otherwise.

(ii) If din+7=5%1 (51 n1), then
% Z (—1)(k1)/2<§> if 9/n—5 and ny = +2 (mod 5),

klni/9

1

B z:(—l)(k_l)/2 <§> if 3|n and ny = £2 (mod 5),
k|n1

0 otherwise.

tn(5,9) =
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Proof. From Theorem 2.3(i) we have
4ty (1,45) = R([1,0,45],8n + 46) and 4¢,(5,9) = R([5,0,9],8n + 14).
Thus applying Theorem 2.6 we deduce the result.

From Theorem 2.7, (2.1) and the fact that (—1)(’“_1)/2(%) = (72 we
have the following corollaries.

COROLLARY 2.1. Let n € N and 4n + 23 = 5%ny with 54 ny. Then n is
represented by x(zgl) +45y(y;1) if and only if 9|n%(n—1), ny = +2 (mod 5)
and 2| ord, ny for every prime ¢ = 11,13,17,19 (mod 20).

COROLLARY 2.2. Letn € N and 4n + 7 = 5%ny with 5t ny. Then n is
represented by 5@—1—9% if and only if 9|n?(n—>5), n1 = £2 (mod 5)
and 2 |ordgny for every prime ¢ =11,13,17,19 (mod 20).

3. General results for R(K,n) when K € H(d) and H(d) = Cs X
.-+ x Cy. Let d be a discriminant with conductor f and dg = d/f?. Assume
kE,m € N, k|dy, 4 1 k, m|f and (k, f/m) = 1. By [0, Lemma 2.1], for
any K € H(d) there exist a,b,c € Z such that K = [a,bkm, ckm?] with
(a,km) =1 and (¢, k) = 1. Following [6, Definition 2.1] we define @, ,,,(K) =
[ak, bk, c].

By the definition, for any [a, bm, cm?] € H(d) and [a, bk, ck] € H(d) with
(¢, k) =1 we have

©1.m([a,bm,em?)) = [a,b,c],  ¢r1([a, bk, ck]) = [ak, bk, c]

and

Okm(K) = vr1(e1m(K)) for K € H(d).
From [6], Theorem 2.1] we know that ¢; ., is a surjective homomorphism
from H(d) to H(d/m?).

Let d be a discriminant and H?(d) = {K? : K € H(d)}. Let G(d) =
H(d)/H?*(d) denote the group of genera, and let w(d) denote the number of
distinct prime divisors of d. It is well known ([3]) that |G(d)| = 24¥) where

w(d) if d=0 (mod 32),
t(d) =4 w(d) —2 if d=4 (mod 16),
w(d) —1 otherwise.

LEMMA 3.1 ([6l, Theorem 6.1)). Letd be a discriminant with conductor f,
do = d/f% and n € N. If (n, f?) is not a square, or there exists a prime p
such that 2 { ord,n and (%0) = —1, then R(G,n) = 0 for any G € G(d).
Suppose (n, f?) = m? for m € N and (%0) = 0,1 for every prime p with
2 {ordyn. Then there are exactly 2t(d)—t(d/m?) genera G representing n, and

for such a genus G we have R(G,n) = N(n,d)/Qt(d)_t(d/mQ).
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LEMMA 3.2. Let d be a discriminant with conductor f and |H?(d)| = 1.
For any positive divisor m of f we have |H?(d/m?)| =1 and

w m2 .
mH B 1 d/m2 B Qt(d)—t(d/"ﬁ)% if d<0,
p p T ) gt(d)—t(d/m?) _loge(d) ifd>0,

plm loge(d/m?)

where e(d) = (1 +y1Vd)/2 and (x1,v1) is the solution in positive integers
to the equation 12 — dy? = 4 for which x1 + y1Vd is least.

Proof. From [6, Theorem 2.1 and Lemma 2.6(i)] we know that ¢1 , is a
surjective homomorphism from H?(d) to H?(d/m?). Since |[H?(d)| = 1, we
must have |H?(d/m?)| = 1. As |[H?(d)| = 1, we have G(d) = H(d)/H?*(d) =
H(d) and so h(d) = |G(d)| = 2?9, Since |H?(d/m?)| = 1, we have G(d/m?)
= H(d/m?)/H%(d/m?) = H(d/m?) and so h(d/m?) = |G(d/m?)| =2t(/m*),
Now applying the above and [6, Lemma 3.5] we obtain the result.

THEOREM 3.1. Let d be a discriminant with conductor f, dy = d/f? and
|H%(d)| = 1. Let K € H(d) and n € N with R(K,n) > 0. Then (n, f?) = m?

for some m € N and

d n .
w<m2> H <1 + ord, m2) if d <0,
(1)=1
1 1 /d/m?
R(K,n) = 4 gi@-uajm?) mﬂ (1 B p( p ))

< 1 <1—|—0rdpn?2> if d>0.

(T)=1
Proof. Since |H?(d)| = 1, every genus consists of a single class. Thus,
applying Lemmas 2.1 and 3.1 we have (n, f2) = m? for some m € N and
1
R(K,n) = N(n,d)

ot(d)—t(d/m?)

-l () T (o)

plm (2)=1

This together with Lemma 3.2 gives the result.

FEuler called a positive integer n a convenient number if it satisfies the
following criterion: Let m be an odd number such that (m,n) =1 and m =
22 +ny? with (x,y) = 1. If the equation m = x> +ny? has only one solution
with x,y > 0, then m s a prime.

According to [3], Euler listed 65 convenient numbers as in Table 3.1
below. He was interested in convenient numbers because they helped him
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find large primes. Gauss observed that a positive integer n is a convenient
number if and only if |[H?(—4n)| = 1. In 1973 it was known that Euler’s list
is complete except for possibly one more n.

Table 3.1
h(—4n) n’s with |H?(—4n)| = 1
1 1,2,3,4,7
2 5,6,8,9,10,12,13, 15,16, 18, 22, 25, 28, 37, 58
A 21,24, 30,33, 40, 42, 45, 48, 57, 60, 70, 72, 78,
85,88,93,102,112,130, 133,177,190, 232, 253
8 105, 120, 165, 168, 210, 240, 273, 280, 312, 330,

345, 357, 385, 408, 462, 520, 760
16 840, 1320, 1365, 1848

THEOREM 3.2. Let d < 0 be a discriminant with conductor f and dy =

d/f% Letd; € N, dy|dy and K € H(d). Let (n, f2) = m? form € N. Letk =
2

Hp\dl,Z)[ordpnp and ny = Hp’(dl pordp(n/m ). Then R(K? n) = R((pkym(K)7 nl)'

Proof. By [6, Theorem 3.2] we have R(K,n) = R(K',n/m?), where K' =
©1.m(K) € H(d/m?). Let p be a prime such that p|d; and p|n/m?. Since
(n/m?2, f2/m?) = 1 we have (n/m? f/m) = 1 and so p { f/m. By [6],
Lemma 2.1] we may assume K' = [a,bp, cp] with a,b,c € Z and p t ac.
Suppose «,, = ord,(n/m?). Then 2 { a,, if and only if 2 { ord, n. Applying
[0, Lemma 3.4] we have

;) on\ , n/m*\ , n/m?
R<K’m2>_R(K’ p? )_ _R<K’p2[‘1p/2} '
Thus,
R(K’, 712> - ... _R<K’, n/m’ 573 > = R(K', kny).
m [ias iz 277

From the above and [6, Lemma 3.4] we deduce
R(K,n) = R(K',n/m*) = R(K', kn1) = R(pp,1(K"),n1)
= R(pr1(p1.m(K)),m1) = R(ppm(K),n1).
This is the result.
LEMMA 3.3 ([0, Theorem 2.2]). Let d be a discriminant with conductor
f and dy = d/f?. Suppose k €N, k|do, 41k and (k, f) = 1. For K € H(d)
we have
) — { [k, 0, d/(4k)]K if 4k |d,
Pkl [k, k, (B2 — d)/(4R)| K if 4kt d.



270 7. H. Sun

THEOREM 3.3. Let d be a discriminant with conductor f and dy = d/ f?.
Let k € N be squarefree, k|dy and (k,f) =1. Let n € N,

—d —d
1,0, — if 4|d, k,0, — if 4k|d,
4 4k
I 1-d and K = B2 g
1,1, —— if 4 r =" ; )
[, 1 } if 41d [k,k:, P } if 4ktd

Then R(K,n) = R(I,kn).

Proof. By Lemma 3.3 we have ¢y, 1 (I) =K. Thus applying [0, Lemma 3.4]
we obtain R(I,kn) = R(gr1(l),n) = R(K,n) as asserted.

4. Formulas for R(K,n) when K € H(d), d < 0, f(d) = 1 and
H(d) = Cy x Cy. Let d < 0 be a discriminant. Then H(d) = Cy x Cy if and
only if d has one of the 34 values given in [6, Proposition 11.1(ii)].

THEOREM 4.1. Let b € {7,11,19,31,59}, and set Ay = [1,0,3b], Ay =
12,2, (3b+1)/2], A3 = [3,0,] and Ag = [6,6, (b +3)/2]. Let i € {1,2,3,6},
n € N and in = 2%3%ngy with 2 Y ng and 3t ng. Then R(A;,n) > 0 if and

only if 2|ordyng for every prime q with (_T%) =—1 and
1 (mod 12) if 2| i and 2| ;,
b (mod 12) if 2|a; and 21 3,
ng =

(3b+1)/2 (mod 12) if 2{ o and 2|5,
(b+3)/2 (mod 12)  if 24, and 21 5.
Moreover, if R(A;,n) >0, then R(A;,n) =2 H(%b):l(l + ord), ng).
Proof. 1t is known that f(—12b) = 1 and H(—12b) = {4, Ay, A3, Ag} =
Cy x Ca. As 21 ng and 3 1 ng, we see that
R(Ai,n0) >0 = ng=1 (mod 12),

R(A3,m0) >0 = ng=0b (mod 12),
R(Ag,n9) >0 = ng=(3b+1)/2 (mod 12),
R(Ag,n0) >0 = ng = (b+3)/2 (mod 12).

If 2 { ord, ng for some prime ¢ with (_T‘%) = —1, we see that ¢ |ng, 21 ord,n
and (%Qb) = —1. Thus, applying Lemma 2.1 we have N(n,—12b) = 0 and
so R(Ai,n) =0.

Suppose that 2 |ord, ng for every prime ¢ with (7731’) = —1. From Lem-

ma 2.1 we have N(ng, —12b) > 0. Observe that 1,b, (3b+1)/2 and (b+ 3)/2
are incongruent modulo 12. Applying the above we deduce
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R(A1,n0) >0 < np=1 (mod 12),
R(As,n0) >0 < ng=b (mod 12),
R(A3,n9) >0 < nog=(3b+1)/2 (mod 12),
R(Ag,n09) >0 < ng=(b+3)/2 (mod 12).

Set

1-(=1D% 1—(—1)Pi
2 3 2

ki =2

S W N =

if2|ai and2|ﬂi,
if 21 a; and 2| 3;,
if 2|y and 21 3,
if 24 oy and 21 G;.
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By Lemma 3.3 we have ¢y, 1(A1) = Ag,. Thus applying Theorems 3.2 and

3.3 we get

R(AZ, n) = R(Al, m) = R(Soki,l(Al)a n[)) = R(Akl, no).

Hence, using the above we deduce
R(A;,n) >0 < R(Ag,,n9) >0
1 (mod 12)
o ny= b (mod 12)
(b+3)/2 (mod 12)
If R(A;,n) > 0, by Theorem 3.1 we have

(3b+1)/2 (mod 12)

if 2| o; and 2| 3,
if 2] a; and 21 G;,
if 2+ «; and 2| 3,
if 21 a; and 21 ;.

R(Ain) =w(-120) ] (+ordyn)=2 [] (1+ordyno).

(128)=1

So the theorem is proved.

(=2)=1

In a similar way one can prove the following results.

THEOREM 4.2. Let m € {5,7,13,17}, i € {1,2,3,6}, n € N and in =
2 30ing with (6,n9) = 1. Then R([i,0,6m/i],n) > 0 if and only if 2| ord, no

for every prime q with (_6Tm) =—1 and

1,6m +1 (mod 24) if 2|a; and 2|5;,
2m +3,8m + 3 (mod 24) if 2|a; and 21 G;,

no =

3m+2,3m+ 8 (mod 24) if 24 ; and 2|5,

m,m + 6 (mod 24) if 21 and 21 5;.

Moreover, if R([i,0,6m/i],n) >0, then

R([i,0,6m/i],n) =2 H (1 + ordy, ng).

—6m \__
(Somy—1
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THEOREM 4.3. Let m € {7,13,19}, i € {1,2,5,10}, n € N and in =
2%i5%ng with (10,n9) = 1. Then R([i,0,10m/i],n) > 0 if and only if
2 |ordg ng for every prime g with (%) =—1 and
1,9,14 10m,9 + 10m (mod 40) if 2|a; and 2| 5;,
54 2m,5+ 8m,5+ 18m,5 + 32m (mod 40) if 2|a; and 21 3,
5m +2,5m + 8,5m + 18,5m + 32 (mod 40) if 21 «; and 2|5,
m,9m, 10 + m, 10 + 9m (mod 40) if 2t a; and 21 G;.
Moreover, if R([i,0,10m/i],n) > 0, then

R([i,0,10m/i],n) =2 [ (1+ ord,no).
(—m)=1

THEOREM 4.4. Let Ay = [1,0,85], A2 = [2,2,43], A5 = [5,0,17] and
Ay = [10,10,11]. Let i € {1,2,5,10}, n € N and in = 2%5%ng with
(10,n9) = 1. Then R(A;,n) > 0 if and only if 2|ord,ng for every prime q
with (7785) =—1 and
1,9 (mod 20) if 2|a; and 2| f;,

13,17 (mod 20) if 2|y and 21 53,
3,7 (mod 20) if 24 a; and 2| 5;,
11,19 (mod 20) if 2t ; and 21 ;.
Moreover, if R(Ai,n) >0, then R(A;,n) =2 H(*T%)zl(l + ord, ng).

TLO:

nog =

THEOREM 4.5. Let A; = [1,0,133], Az = [2,2,67], A7y = [7,0,19] and
Ay = [14,14,13] = [13,12,13]. Let i € {1,2,7,14}, n € N and in =
2% 7Ping with (14,n9) = 1. Then R(A;,n) > 0 if and only if 2|ord,ng
for every prime q with (%) =—1 and
1,9,25 (mod 28) if 2|a; and 2| 5;,

3,19,27 (mod 28) if 2|y and 21 f;,
11,15,23 (mod 28) if 24 a; and 2| B,
5,13,17 (mod 28)  if 2 «; and 21 f3;.
Moreover, if R(A;,n) >0, then R(A;,n) =2 H(%):l(l + ordp ng).

ng =

THEOREM 4.6. Let A; = [1,0,253], Ay = [2,2,127], A1 = [11,0, 23]
and Agy = [22,22,17] = [17,12,17]. Let i € {1,2,11,22}, n € N and in =
2%11Ping with (22,n9) = 1. Then R(A;,n) > 0 if and only if 2|ord,no
for every prime q with (%) = -1, (;—;) = (=1)*P and (22) = (—1)~.

Moreover, if R(Ai,n) >0, then R(A;;n) = 2]] =2s3,_,(1 + ordpno).
P

THEOREM 4.7. Letm € {13,29,37,53}, i € {1,3,5,15}, n € N and in =
3%58ing with (15,n9) = 1. Then R([i,4, (i + 15m/i)/4],n) > 0 if and only
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if 2|ord,ng for every prime q with (%) =-1, (%)= (—1)lm=2)/3)ei+5;
and (%) = (= 1)t m=3)/518: - Moreover, if R([i,i, (i + 15m/i)/4],n) > 0,
then R([i,i, (1 + 15m/i)/4],n) = 2 H(ﬂ)zl(l + ord, ng).

THEOREM 4.8. Let i € {1,3,7,21}, n € N and in = 3%7Pny with
(21,n9) = 1. Then R([i,4, (1 + 483/i)/4],n) > 0 if and only if 2|ord,ng
for every prime q with (—_‘;83) =—1, () = (=1)% and (%) = (—1)ethi,
Moreover, if R([i,i, (i +483/i)/4],n) > 0, then R([i,i, (i + 483/i)/4],n) =

THEOREM 4.9. Let i € {1,5,7,35}, n € N and in = 5%7%ng with
(35,n9) = 1. Then R([i,4, (1 + 595/i)/4],n) > 0 if and only if 2|ord,ng
for every prime q with (%) = —1, () = (-1)% and (2) = (—1)~.
Moreover, if R([i,i, (i +595/i)/4],n) > 0, then R([i,i, (i + 595/i)/4],n) =
21_[(%):1(1 —I—Ol“dp no).

THEOREM 4.10. Let i € {1,3,11,33}, n € N and in = 3%11%nq with
(33,n0) = 1. Then R([i,1, (i + 627/i)/4],n) > 0 if and only if 2|ord,ng
for every prime q with (=8%1) = —1, (@) = (=1)*"P and (%) = (-1)%.
Moreover, if R([i,i, (i +627/i)/4],n) > 0, then R([i,i, (i + 627/i)/4],n) =
2]_[(%):1(1 + ord, ng).

THEOREM 4.11. Let i € {1,5,11,55}, n € N and in = 5*11%ng with
(55,n9) = 1. Then R([i,4, (1 + 715/i)/4],n) > 0 if and only if 2|ord,ng
for every prime q with (%) = —1, () = (-1)% and (3) = (-1)".
Moreover, if R([i,i, (i +715/i)/4],n) > 0, then R([i,i, (i + 715/i)/4],n) =
QH(¥)21(1 —|—Ol“dp no).

THEOREM 4.12. Let i € {1,5,7,35}, n € N and in = 5%7Png with
(35,n0) = 1. Then R([i,4, (i + 1435/3)/4],n) > 0 if and only if 2|ord,ng
for every prime q with (%) = -1, () = (-1)*F and (%) = (—1)%~.
Moreover, if R([i,i,(i+1435/7)/4],n) > 0, then R([i,1, (i+1435/i)/4],n) =
QH(%M):I(l + ordy, ng).

5. Formulas for t,(a,b) when 4{a+ b and H(—4ab) = Cy x Cs

THEOREM 5.1. Let n € N, a € {1,3}, b € {7,11,19,31,59} and 4n +
(a+3b/a)/2 = 3°ng (31 ng). Then t,(a,3b/a) >0 if and only if 2|ord,no
for every prime q with (_T‘%) = -1 and
1 (mod 3) ifbe{11,59} and = (a+1)/2 (mod 2),
nog =
0 2 (mod 3) otherwise.

Moreover, if ty(a,3b/a) > 0, then t,(a,3b/a) = %H(;%) (1 +ord,ng).

> )=
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Proof. As b = 3 (mod 4), we have a + 3b/a = 2 (mod 4). Thus, by
Theorem 2.3 we have 4t,(a,3b/a) = R([a,0,3b/a],8n + a + 3b/a). Since
a(8n + a + 3b/a) = 2 - 30+(@=D/2p applying Theorem 4.1 we deduce that
tn(a,3b/a) > 0 if and only if 2|ord, no for every prime ¢ with (_Tgb) =-1
and
65.1) o= { (3b+1)/2 (mod 12) if 2| B+ (a—1)/2,

(b+3)/2 (mod 12) if 218+ (a—1)/2.

From 4n + (a + 3b/a)/2 = 3°ng we know that ng = (3b + 1)/2 or
(b+3)/2 (mod 4) according as 2|8+ (a —1)/2 or 21 3+ (a — 1)/2. Thus,
(5.1) is equivalent to

_[(3b+1)/2=2 (mod 3) if2|8+ (a—1)/2,

- { (b+3)/2=2b (mod 3) if24B+ (a—1)/2
(1 (mod 3) if be{11,59} and = (a+1)/2 (mod 2),
B {2 (mod 3) otherwise.
Hence the result follows from Theorem 4.1.

From Theorems 4.2-4.6 and 2.3 one can similarly deduce the following
results.

THEOREM 5.2. Let n € N, m € {5,7,13,17} and a € {1,2,3,6}. If
8n+a+6m/a =3 ng (31no), then t,(a,6m/a) >0 if and only if 2| ord, ng
for every prime q with (76Tm) =—1 and

B { (—1)2*! (mod 3) if me {517},
L (=1)Pu(a) (mod 3) ifm e {7,13}.
Moreover, if ty(a,6m/a) > 0, then t,(a,6m/a) = %H(ﬂ)zl(l + ord, ng).
P
THEOREM 5.3. Letn € N, m € {7,13,19}, a € {1,2,5,10} and 8n+a+

10m/a = 5°ng (51 no). Then t,(a,10m/a) > 0 if and only if 2|ord,ng for
every prime q with (%) =—1 and

<no) - { (—1)atl if m=17,13,
5)  L(=1)Pu(a) if m=19.
Moreover, if t,(a,10m/a)>0, then t,(a,10m/a)=1 H(qgm):l(l—i-ordp ngp).

THEOREM 5.4. Let n € N, a € {1,5} and 4n + (a +85/a)/2 = 5°ny
(5 1 ng). Then ty(a,85/a) > 0 if and only if 2|ord,ng for every prime q
with (_785) = —1 and () = (=1)%*1u(a). Moreover, if t,(a,85/a) > 0,
then tn(a,85/a) = %H(;ss)zl(l + ord, no).

p

THEOREM 5.5. Let n € N, a € {1,7} and 4n + (a+ 133/a)/2 = 7Png
(71ng). Then t,(a,133/a) > 0 if and only if 2|ord,ng for every prime q
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with (%) = —1 and (2) = (=1)’u(a). Moreover, if t,(a,133/a) > 0,
then t,(a,133/a) = % [1(=233)_4 (1 + ordpno).
P

THEOREM 5.6. Let n € N, a € {1,11} and 4n + (a+253/a)/2 =
11Png (11 1 ng). Then t,(a,253/a) > 0 if and only if 2|ord,ng for ev-
ery prime q with (%) =—1 and ny =2,6,7,8,10 (mod 11). Moreover, if
tn(a,253/a) > 0, then ty(a,253/a) = %H(ﬂ)zl(l + ord, ng).

p

6. Formulas for R(K,n) when K € H(d), d < 0, f(d) = 1 and
H(d)gCQXCQXCQ

THEOREM 6.1. Leti,n € N, |30 and in = 2%3%5Yng with (ng, 30) = 1.
Let m € {7,11,23} and

[i,0, 15m /4] if 214,
A = o1/ 15m ) .
|:17172<2+i/2):| ’l/f 2|Z

Then R(A;,n) > 0 if and only if 2|ordyng for every prime q with
(%) =1, (%) = (—1)((m+D)/Daitf; (m0) = (—1)tlm+2)/3Bitvi g
() = (—1)«HtBitlm=3)/51  Moreover, if R(A;,n) > 0, then R(A;,n) =

2 H(715m):1(1 + Ol“dp no)
P

Proof. 1t is known that f(—60m) =1 and H(—60m) = {A : k € {1,2,
3,5,6,10,15,30}} = Cy x Cy x Cy. If 2 { ordgng for some prime ¢ with
(%) = —1, then 2 { ord, n and (%) = —1. Thus, applying Lemma 2.1
we have N(n, —60m) = 26(n, —60m) = 0 and so R(A4;,n) = 0.
(o)

Suppose that 2|ord,ng for every prime ¢ with = —1. From

Lemma 2.1 we have N(ng, —60m) > 0. Now it is easily seen that R(Ag,ng)

no

> 0 depends only on the values of (;—;), (g) and (") given by Table 6.1.

Table 6.1. Criteria for R(Ax,n0) >0

G A (7) () ()

1 [1,0,15m] 1 1 1

2 [2’27 1+;5m] (71)(m+1)/4 -1 1

3 [3,0,5m] —1 (—1)[(m+2)/3] 1

5 [5,0,3m] 1 -1 (—=1)lm=3)/]
6 [6,6, 35m]  _(—1)mHtD/A _(q)lon+2)/3] 1

10 [10,10, 2£2m]  (—1)lmFD/4 1 —(=1)lm=3)/3]
15 [15,0,m] -1 —(=D)lm+2/3] _(_1)l(m=3)/5]

30 [307307 15;M] _(_1)(m+1)/4 (_1)[("L+2)/3] (_1)[(m—3)/5]
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—(—1D% 1-(—1)Pi  1-(—1)%

Set k; = R S By Lemma 3.3 we have ¢y, 1(A1)
= Ay,. Thus applying Theorems 3.2 and 3.3 we get

R(Ala n) = R(A17 Zn) = R(@kml(Al)? no) = R(Akn nO)'
Hence, using the above we deduce
R(A;,n) >0 < R(Ag,,n9) >0

o <—1> _ (—1)(mD/aces, <”0> _ (—1)eetlm+2)/308,
no 3

and <no> _ (1)t Bt m=3)/5]n

5
If R(A;,n) > 0, by Theorem 3.1 we have
R(Ai,n) =w(—60m) [ (1+ordyn)=2 T[] 1+ ord,ng).
(=2m)=1 (=0m)=1
So the theorem is proved.
In a similar way one can prove the following results.

THEOREM 6.2. Let i,n €N, i|42 and in=2%3%7Ying with (ng,42)=1

Let
{ [i,0,273/i] if 211,
Ai=19 .. .. N e
[i,4, (i +1092)/(40)] if 2]i.
Then R(A;,n) > 0 if and only if 2|ord,ng for every prime q with (=
—1, (&) = (=), (20) = (=1)% and () = (=1)%. Moreover, if
,,n% >0, then R(Ai,n) =2]] =zm, (14 Ord »10)-

273)

THEOREM 6.3. Let i,n €N, i |42 and in=2%3%TYing with (ng,42)=1.

Let
4 — { [i,0,357/1] if 2114,
’ [i,4, (1% 4 1428)/(4d)] if 2]i.
Then R(A;,n) > 0 if and only if 2|ordyng for every prime q with (=
=—1, (3) = (1) +hitr () = (- 1)"“*@ and (%) = (=1)%. Moreover,

n

if R(A;,n) >0, then R(A;,n) = 2]_[ =gt _, (14 ordy, ng).

357)

THEOREM 6.4. Let i,n€N, i|70 and in=2%50%7%ng with (ng,70)=1

Let
{ [i,0,385/] if 211,
Ai=19 .. .. N e
[i,4, (1% + 1540) /(4i)] if 2|i.
Then R(A;,n) > 0 if and only if 2|ord,ng for every prime q with (
= -1, (32) = (1), (&) = (-1)* TPt and (22) = (—1)%i. Moreover,

no 5

if R(Ai,n) >0, then R(A;n) =2]] =sss) _,(1 + ordy ng).

—385
q )
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THEOREM 6.5. Let i,n €N, i|30 and in=2%3%5%ng with (ng,30)=1.
Then R([i,0,210/t],n) > 0 if and only if 2|ord,ng for every prime q with
(Z20) = 1, (22) < (1), (2) = (1) and () = (1)
Moreover, if R([i,0,210/i],n) >0, then R([z,0,210/i],n) = 2]] =20 _ (14

ord, ng).

THEOREM 6.6. Let i,n€N, i|30 and in=2%3%5%ng with (ng,30)=1.
Then R([i,0,330/t],n) > 0 if and only if 2|ord,ng for every prime q with
(Z30) = -1, (22) = (1), (5) = (~1)250 and (1) = (~1)o5,
Moreover, if R([i,0,330/i],n) > 0, then R([i,0,330/i],n) = 2H(%):1(1+

ord, ng).

THEOREM 6.7. Let i,n €N, i|42 and in=2%3%T7Yng with (ng,42)=1.
Then R([i,0,462/i],n) > 0 if and only if 2|ordyng for every prime q with
(=12) = L1 (2) = (C1)f, () = (—1)% and (%) = (—1)%. More-
over, if R([i,0,462/i],n) > 0, then R([i,0,462/i],n) = QH =ts2) 1+

ord, ng).

THEOREM 6.8. Let i,n € N, i|105 and in = 3%55%7%ing with (ng, 105)
= 1. Then R([i,i,(i* + 1155)/(4i)],n) > O if and only if 2|ord,ng for
every prime q with (;1(1155) = -1, () = (—1)%%, (%) = (=1)*™% and
(20) = (=1)**Fi Moreover, if R([i,i, (i*+1155)/(41)],n) > 0, then R([i, 1,
(i + 1155)/(43)}, ) = 2 [T zusss)_ (1 + ordy mo).

THEOREM 6.9. Let i,n €N, i|105 and in = 3%5%7Ying with (ng, 105)
= 1. Then R([i,i,(i® + 1995)/(4i)],n) > O if and only if 2|ord,ng for
every prime g with (<19%5) = —1, (%) = (~1)0+8:, () = (~1)% % and
() = (=1)*HB+% - Moreover, if R([i,i,(i* + 1995)/(4i)],n) > 0, then
R([i,1, (1% + 1995)/(4i)],n) = 2 H(%ggs):l(l + ord) ng).

THEOREM 6.10. Leti,n € N, i|231 and in = 3% 75%11%ng with (ng, 231)
= 1. Then R([i,i, (i* + 3003)/(42')] > 0 if and only if 2|ordyng for

n)
every prime q with (_3003) = -1, (&) = (1), (%) = (-1)™ and
(29) = (=1)%. Moreover, if R([l,z,( 2 1 3003)/(44)], n) > 0, then R([i,1,
(1% + 3003)/(4i)],n n) = 2] =s00 =003 _,(1+ ordy ng).

THEOREM 6.11. Leti,n € N, i|195 and in = 3%55%13Ying with (ng, 195)
= 1. Then R([i,i,(i* + 3315)/(4i)],n) > 0 if and only if 2|ord,ng for
every prime q with (%) = -1, (%) = (-1)F%, () = (- )“””31*%
and (23) = (—1)%. Moreover, if R([i,i, (i*® 4+ 3315)/(4i)],n) > 0, then
R([4,14, (i + 3315) /(4i)],n) = 2 ]_[(%):1(1 + ord, ng).
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7. Formulas for ¢,(a,b) when 4{a+b and H(—4ab) = Cy x Cy x Cs

THEOREM 7.1. Let m € {7,11,23}, a € {1,3,5,15} and n € N. If
a(4n+(a+15m/a)/2) = 3°57ng with 3 ng and 51 ng, then t,(a, 15m/a) > 0
if and only if 2|ordyng for every prime q with (%) = -1, (%) =
— (=)l +2/318+7 g (%) = —(=1)BHm=3)/51 | Moreover, if t,(a,15m/a)

> 0, then t,(a,15m/a) = %H(—15m):1(1 + ord, np).
p

Proof. Since (—1)m*tD/4 = (1—-m)/2 = (a®>+15m)/2 = 4na +
(a® 4 15m)/2 = 3°57ng = (—1)°ng (mod 4), we have (;—;) = (=1)m+D/445,
Asa+15m/a = a+a = 2 (mod 4), by Theorem 2.3 we have 4t,,(a, 15m/a) =
R([a,0,15m/a),8n + a+ 15m/a). Now applying the above and Theorem 6.1
we deduce the result.

In a similar way, using Theorems 6.2-6.7 one can prove the following
results.

THEOREM 7.2. Letn € N and a € {1,3,7,21}. If dn+ (a + 273/a)/2 =
3P ng with 34 ng and 71 ng, then t,(a,273/a) > 0 if and only if 2|ord, no
for every prime q with (%) = -1, np =2 (mod 3) and (”—70) = (—1)5(%).
Moreover, if t,(a,273/a) > 0, then t,(a,273/a) = %H(%):1(1+Ordp ngp).

THEOREM 7.3. Letn € N and a € {1,3,7,21}. If 4n+ (a + 357/a)/2 =
387 ng with 3 { ng and 71 ng, then t,(a,357/a) > 0 if and only if 2 | ordg no
for every prime q with (%) = —1 and (%) = —(®) = (-1)"(2). More-
over, if t,(a,357/a) > 0, then t,(a,357/a) = %H(%):l(l + ord, ng).

THEOREM 7.4. Letn € N and a € {1,5,7,35}. If 4n + (a + 385/a)/2 =
557 ng with 51 ng and 71 ng, then t,(a,385/a) > 0 if and only if 2| ord, ng
for every prime q with (%) = -1 and (%) = —(2) = (-1)"u(a).
Moreover, if t,(a,385/a) > 0, then t,(a,385/a) = %H(%):l(l +ord, ng).

THEOREM 7.5. Let a,n € N, a|30 and %5 (8n + a +210/a) = 3857 ng
with 3 { ng and 5 1 ng. Then t,(a,210/a) > 0 if and only if 2|ord,ng
for every prime q with (;?110) = —1and () = (—1)5(%) = (—1)2 1%,

Moreover, if t,(a,210/a) > 0, then t,(a,210/a) = %H(ﬂ)zl(l + ordy, ng).
P

—~

THEOREM 7.6. Let a,n € N, a|30 and 5% (8n +a + 330/a) = 3857 ng
with 3 { ng and 5 1 ng. Then t,(a,330/a) > 0 if and only if 2|ord,ng
for every prime q with (—73;30) = —1land () = (-1)(%) = (—1)2—1+8,

Moreover, if t,(a,330/a) > 0, then t,(a,330/a) = %H(ﬂ)zl(l + ord, ng).
P

—~
=

THEOREM 7.7. Let a,n € N, a|42 and &~ (8n + a + 462/a) = 3°7ng

with 3 { ng and 7 1 ng. Then t,(a,462/a) > 0 if and only if 2|ord,ng

—~
N
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for every prime q with (#) = -1, (&) = (-1)""" and (%) = (-1)™.
Moreover, if t,(a,462/a) > 0, then t,(a,462/a) = 2]_[( toz)_ | (L4ordy, ng).

8. Formulas for ¢,(a, 1365/a)

THEOREM 8.1. Leti,n€N, i|210 and in = 2%3% 5% %nq with (ng, 210)
= 1. Set A; = [i,0,1365/i] or [i,i,(i* + 5460)/(4i)] according as 2 t i
or 2|i. Then R(A;,n) > 0 if and only if 2|ordyng for every prime g

with (F80) = —1, (F1) = (—n)@tfito (m) = (—1)ethit(m) =
(—1)% A and (%) = (—1)%Hit% . Moreover, if R(A;n) > 0, then

R(Az,n) = 2H 1565 1(1 + ordp ’rlo).

Proof. 1t is known that f(—5460) = 1 and H(—5460) = {Ay : k € N,
k|210} = Cy x Cy x Cy x Cy. If 2 1 ord, ng for some prime ¢ with (ﬂ)
= —1, we see that 2 { ordyn and (= 5460) —1. Thus, applying Lemma 2.1
we have N (n, —5460) = 2d(n, —5460) =0 and so R(A4;,n) = 0.

Suppose that 2|ord,ng for every prime ¢ with (%) = —1. From
Lemma 2.1 we have N(ng, —5460) > 0. Now it is easily seen that R(A;, ng)
> (0 depends only on the values of (;—01), (%), ("2) and (%) given by the
following table.

Table 8.1. Criteria for R(A;,ng) >0

i A; ) () () ()
1 [1,0,1365] 1 1 1 1
2 [2,2,683] -1 -1 -1 1
3 [3,0,455] -1 -1 -1 -1
5 [5,0,273] 1 -1 -1 -1
6 [6,6,229] 1 1 1 -1
7 [7,0,195] ~1 1 -1 -1

10 [10,10,139]  —1 1 1 -1

14 [14,14,101] 1 -1 1 -1

15 [15,0,91] -1 1 1 1

21 [21,0,65] 1 -1 1 1

30 [30,30,53] 1 -1 -1 1

35 [35,0,39] -1 -1 1 1

42 [42,42,43] ~1 1 -1 1

70 [70,70,37] 1 1 -1 1

105 [105,0,13] 1 1 -1 -1
[

210  [210,210, 59] -1 -1 1 -1
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Set

=DM 101 1M _1-(-1)%
2 2

k=2"2 3 2 b

By Lemma 3.3 we have ¢, (A1) = Ag. Thus applying Theorem 3.2 we get
R(A1,n) = R(pk,1(A1),n0) = R(Ag, no).

Hence, using the above we deduce

R(A1,n) >0 < R(Ag,no) >0
-1 n
) =(=1 a1+P1+01 0) _ -1 a1+B1+7
o () = (e, (20— pyesin,

no

(7150> _ (_1)041+51+71+51 and (77;)) _ (_1)51-1-71-1-51_

To see the criteria for R(A;,n) > 0 (¢ > 1), we note that R(A4;,n) =
R(Aj,in) by Theorem 3.3.
If R(A;,n) >0, by Theorem 3.1 we have

R(Ai,n) =w(-5460) [ (+ordyn)=2 J[ (1+ordyno).

(751360):1 (71565):1

So the theorem is proved.

THEOREM 8.2. Let a,n € N, a|105 and 4an+ (a®+1365)/2 = 30577%n,
with (ng,105) = 1. Then t,(a,1365/a) > 0 if and only if 2|ord,ng
for every prime q with (%) = -1, (&) = —(=1)P* and () =
— (%) = (=1)P*t7*°. Moreover, if t,(a,1365/a) > 0, then t,(a,1365/a) =

% H(— 365):1(1 + ord, no).

p
Proof. From Theorem 2.3(i) we know that
4tn(a,1365/a) = R([a,0,1365/al,8n + a + 1365/a).

Since 4an + (a® 4+ 1365)/2 = 3557790 we see that (—1)%+9ng = 355779n,
(a®41365)/2 = 3 (mod 4) and so (;—;) = —(=1)*9. As a(8Sn+a+1365/a)
2 - 3857790, using Theorem 8.1 and the above we get

tn(a,1365/a) > 0
& R([a,0,1365/a],8n + a + 1365/a) > 0

o (T _Cqyptr, (B0 _qyptrs (10 (Lpypets,
3 ) 7
When t,(a, 1365/a) > 0, using Theorem 8.1 we deduce the remaining result.

9. Formulas for R(A,n) when d < 0 and H(d) = {I,A, A% A3}.
From [6l Proposition 11.1] we know that all negative discriminants d with
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H(d) = Cy are:

-39, —55, =56, —63, —68, —80, —128, —136, —144, —155, —156,

—171, 184, —196, —203, —208, —219, —220, —252, —256, —259,

—275,-291, —292, —323, —328, —355, —363, —387, —388, —400,

475, =507, =568, —592, —603, —667, —723, —763, —772, —955,

1003, —1027, —1227, —1243, —1387, —1411, —1467, —1507, —1555.
From [6, Theorem 11.3] and Lemma 2.1 we deduce the following result.
LEMMA 9.1. Let d be a discriminant with conductor f. Suppose H(d) =

{I,A, A%, A3} with A* =1 and n € N. Then
0 if (n, f?) is not a square,
N(n,d)/4 if (n, f?) =m? withm € N and h(d/m?) =1,
(1 — (=1)Zrertio )N (n, d) /4

if (n, f?) = m? with m € N and h(d/m?) > 1,
where Ag is a generator of H(d/m?). Hence R(A,n) = 0, N(n,d)/4 or
N(n,d)/2.

LEMMA 9.2. Let d be a discriminant such that H(d) = {I, A, A%, A3}
with A* = 1. Then no prime divisor of d can be represented by A.

R(A,n) =

Proof. Suppose that p is a prime divisor of d and f = f(d). If p| f, by
[0, Lemma 5.2(i)] we know that p is not represented by any class in H(d).
If p1 f, by [6, Lemma 5.2(ii)] we know that p is represented by exactly one
class K € H(d) and K = K. Thus p is not represented by A. This proves
the lemma.

LEMMA 9.3. Let d be a discriminant and a,b,c € Z with b* — 4ac = d.
Let p be a prime such that p = ax?® + bxy + cy? for some x,y € 7. Let q be
a

an odd prime such that q|d and qtap. Then (§> =(2).

Proof. As 4ap = (2ax + by)? — dy? we obtain the result.

LEMMA 9.4. Let d be a discriminant with conductor f and dy = d/f?.
Let H(d) = {I, A, A%, A3} with A*=1,n €N and (n, f) = 1. Suppose that
q is an odd prime divisor of d such that for any prime p # q,

p€ R(I)UR(A?*) = (S) =1, and pe R(A) = (2) =—1.
Suppose n = q“ng (q1ng). Then

(1= (352 (%)
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Proof. As (n, f) =1, by Lemmas 2.1 and 9.1 we have
R(A,n)=(1- (—1)2P6R<A) Ordp”)N(Z’d)
— (1) R(A)Ordp” M @
(1= (—1)Sre j U s (%),
k|n
If there is a prime p such that (%) = —1 and 2 { ord, n, by (2.1) we have
Zk‘n(%) = ka(%) = 0 and so R(A,n) = 0. Hence the result holds. Now

assume 2 | ord, n for every prime p with (%) = —1. If p is a prime such that

pldand p|n, as (n, f) = 1 we have p{ f. From Lemma 9.2 and its proof we
know that p € R(I) U R(A?%) and p ¢ R(A). Thus q ¢ R(A). Hence

np = H pordpn H pordpn H pordpn
()=—1

PER(I)UR(A?), p#q PER(A)

and therefore

(- m G

(4)=-1 PER(I)UR(A?), p#q
_ H (_1)0rdpn _ (_1)ZpeR(A) ordpn.
pER(A)

Now putting the above together we obtain the result.

LEMMA 9.5. Let d be a discriminant with conductor f and 4|d. Let
H(d) = {I,A, A%, A3} with A* = I, n € N and (n, f) = 1. Suppose a €
{=1,2,-2}, n =2%yg (2t ng) and for any odd prime p,

pe R(I)UR(AY) = <Z> —1, and pe R(A) = <Z) — 1.
T e (- (2) ()

kn
), (2) with 2, (%), (3) in the proof of Lemma 9.4

n

(=)

Proof. Replacing g, (
we deduce the result.

<

LEMMA 9.6. Let d be a negative discriminant with conductor f, dy =
d/f* and H(d) = {I, A, A%, A3} with A* = I. Let n € N and (n, f?) = m?
for m € N. Suppose h(d/m?) = 1. Then

wa-o() £ ()

kln/m?2
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Proof. From Lemmas 9.1 and 2.1 we have

=20 (4)) o 5 (4)

plm kln/m?2
As h(d) = 4 and h(d/m?) =1, by [6, Lemma 3.5] we have
1 [/d/m? h(d)w(d/m?) d
1 [N S . d = -—-— = 4 —- .
oT1 (-5 (%57)) v - g =
plm
So the result follows.
LEMMA 9.7. Let d be a negative discriminant with conductor f, dy =

d/f? and H(d) = {I, A, A% A3} with A* = I. Let n € N and (n, f?) = m?
for m € N. Suppose d/m* # —60 and h(d/m?) = 2. Then

= (-+(iid) 5 (%),

kin/m?
where x(n',d") € {1,—1} is given by [6, Table 9.2].

Proof. For K € H(d), by [6l Lemma 2.1(ii)] we may assume K =
[a, bm, cm?] with (a,m) = 1. We recall that 1 ,,([a, bm, cm?]) = [a, b, c]. By
[6, Theorem 2.1], (1 1, is a surjective homomorphism from H(d) to H(d/m?).
Suppose H(d/m?) = {Iy, Ap} with A2 = I;. Then clearly o1 ,(A4) = Ap.
Now applying [6, Theorem 3.2] we obtain R(A,n) = R(Ag,n/m?). As
d/m? = do(f/m)? and (n/m?, f/m) = 1, using (2.1) and [6 Theorem 9.3]
we deduce R(Ag,n/m?) = (1 — x(n/m?2,d/m?)) Zkln/mz(%’). So the result
is true.

THEOREM 9.1. Let n € N. Then

(n =3%g, 3t ng),

(%)
R =5 (1- () > () (=m0 5100
RB.2.5lm =5 (1- (2)) > () (=m0 24w,
RB.2.0lm =5 (1- () > () (=m0 24,
s - () e
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Proof. Clearly H(—39) = {[1,1,10],[2,1,5],[2,—-1,5],[3,3,4]} = C4 and
f(=39) = 1. Let p # 3 be a prime. If p = 22 + zy + 10y? or 322 + 3xy + 492,
by Lemma 9.3 we have (§) = 1 and (&) = 0,1. If p = 22* + zy + 5¢7,
by Lemmas 9.2 and 9.3 we have (§) = ({5) = —1. Thus taking d = —39,
f=1 A=[2,1,5] and ¢ = 3 in Lemma 9.4 we deduce the formula for
R([2,1,5],n).

It is known that H(—55) = {[1,1,14],[2,1,7],[2,—1,7],[4,3,4]} = C}
and f(—55) = 1. Let p # 5 be a prime. If p = 2?42y +14y? or 42>+ 3xy+4y2,
by Lemma 9.3 we have (§) =1 and ({5) =0,1. If p = 222 + zy + Ty?, by
Lemmas 9.2 and 9.3 we have (£) = ({7) = —1. Thus taking d = =55, f =1,
A =12,1,7 and ¢ = 5 in Lemma 9.4 we deduce the formula for R([2,1,7],n).

It is clear that H(—56) = {[1,0,14],[2,0, 7], [3,2,5], [3,—2,5]} = Cy and
f(—=56) = 1. Let p be an odd prime. If p = 2% + 14y? or 222 + 7y?, then
clearly (%) = 1 and (_77) = 0,1. If p = 322 + 22y + 5y2, then clearly
(%) = (%) = —1. Hence taking d = =56, f =1, A = [3,2,5] and a = 2 in
Lemma 9.5 we deduce the result for R([3,2,5],n).

Clearly H(—68) = {[1,0,17],[2,2,9],[3,2,6],[3, —=2,6]} = Cy and f(—68)
= 1. Let p be an odd prime. If p = 22 + 17y? or 222 + 22y + 9y?, then clearly
(_71) =1 and (177) =0,1. If p = 322 + 22y + 632, then clearly (_71) =—1
and () = —1. Hence taking d = =68, f =1, A = [3,2,6] and a = —1 in
Lemma 9.5 we deduce the result for R([3,2,6],n).

It is clear that H(—136) = {[1,0,34],[2,0,17],[5,2,7],[5,—2,7]} = C4
and f(—136) = 1. Let p be an odd prime. If p = 22 + 34y? or 222 + 17y?,
then clearly (72) =1 and (1—7) =0,1. If p = 522 + 22y + Ty?, then clearly

(_72) (1p7) —1. Hence taking d = —136, f =1, A=[5,2,7] and a = -2

in Lemma 9.5 we deduce the result for R([5,2,7],n).
By the above, the theorem is proved.

2
)

Using Lemmas 9.4 and 9.5 one can similarly prove the following results.

THEOREM 9.2. Letn € N. Then

R =5 (1- () > (5F) (=m0 540,
(54,10}, ) ;(1—@));(‘284) (n = 2%ng, 2 o),
R(3,1,17],n) ;(1—@));(‘?3) (n = Tn0, T4 o),
R =5 (1= (3)) (7)) =30 34m)
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THEOREM 9.3. Letn € N. Then

R([5,1,13],n) = ;<1 - (”;’) (n = T, 71 ng),

(n = 3%ng, 31no),
DEC) o
n ;(?’)) (n = 17%ng, 17 f n),

)T () et

THEOREM 9.4. Letn € N. Then

R([7,3,13],n) — ;<1 _

S‘I cn‘g
S | =
\_/\_/
e

(k) (n = 5%n0, 5 1 no),
(_i;%) (n = 2%ng, 21 no),

(n =2%g, 2t ng),

gls 3w

S
S

(n = 3%ngp, 31 nop).

=
gy
\.H
o
—_
2
3
N~—
Il
|
N
=
|
e s e e N Y

(%)
<k> (n = 23%ng, 23} no),
()

THEOREM 9.5. Letn €

1
R([13,11,17],n) =
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R([11,3,23],n) = ;<1 - <7f;)> %: <_1£03> (n = 17%no, 171 no),

R(]7,3,37),n) = ;<1 - <T§>> kz': <_1£27> (n = 13%no, 131 no).

THEOREM 9.6. Letn € N. Then

Rz =3 (1- (%) > (F77) =m0 3t
Rz s = 3 (1 (1)) > (F72) =11t 114,
R(13.11.201m) = 3 (1- (50)) > (F57) =190, 19 o),
R =5 (1- (32)) > (F5) =1 174,
R((13.1.200m) = 5 (1- (52)) > (F25) =11, 11 4m0)

rrs20 = 3 (1= () X (T22) (=m0 5400

For a discriminant d and n € N we recall that 6(n,d) = ka(%)

THEOREM 9.7. Letn € N and dy € {—7,—19,—43, —67,—163}. Then

o0(n,do) if 3|n—2,
R([9737 (1 _dO)/4]7n) = 2(5(71, do) Zf 9|n,

0 otherwise.

Proof. Let d = 9dy. Then we have f(d) =3 and H(d) = {[1,1, (1—d)/4],
19,9, (9—do) /4], 9,3, (1—do) /4], 9, —3, (1— do)/4]}. Clearly H(d) = Cy and
9,3, (1 — dp)/4] is a generator of H(d). As (1 — dp)/4 = 2 (mod 3), using
Lemma 9.3 we see that a prime p is represented by [9,3, (1 — doy)/4] if and
only if (§) = —1 and () = (&) = () =1, and p = 22 + ay + 1342 or
922 4 9y + %gﬂ if and only if (§) =1 and (%0) =0, 1. Since h(dp) = 1,
by Lemmas 9.1, 9.4 and 9.6 we have
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20 ()2 (%) i

R(19.3, (1~ do)/4].n) = { 3 <Cj:> it 9n,

kin/9
0 if 3| n.

To complete the proof, we note that if 9|n and n = 3%ng (31 ng), then
do do do do
o 2(7)-2 (7)) (3) -
kln kln/9 k|no

THEOREM 9.8. Let n € N. Then
d(n,—8) if 4ln—3
25(n/4,—8) if 16|n — 12,
25(n/16,—-8) if 16|n,

0 otherwise.

Proof. 1t is known that H(—128)={[1,0,32],[4,4,9], 3,2, 11],[3, -2, 11]}
and f(—128) = 4. For a prime p, it is clear that p = 322 + 2xy + 11y? if
and only if (5}) = —1 and (_2) =1, and p = 2% + 32y or 42? + 4y + 9y
if and only if (=) = (7) = 1. Thus, if 2 { n, by Lemma 9.5 we have

n)

R([Sa 2, 11]777‘) -

R([3,2, 11] :ZE —(=1)2 2T 8). If (n,16) = 4, then n = 4 (mod 8).
As H(-32) ={][1,0,8],[3,2, 3]}, using Lemma 9.7 we see that

- 1 ()8 -8
R(. 2,11 ) = (1- (n/4)) ( ") == >k2/< 2)

If (n,16) = 16, then 16 |n. As h(— ) =1, by Lemma 9.6 we have

R([3,2,11],n _22< )

k|n/16
If (n,42) is not a square, by Lemma 9.1 we have R([3,2,11],n) = 0. So the
theorem is proved.

THEOREM 9.9. Letn € N and n = 2%ny with 2 { ng. Let dy € {5,13,37}.
Then
d(n, —4dy) if n=3 (mod 4),
R([8,4,(d1 +1)/2],n) = { 26(n/4,—4dy) if 4|n and 4|ng+ 1 — 20,
0 otherwise.
Proof. Let d = —16d;. It is easily seen that f(d) = 2 and
H(d) ={[1,0,4d4],[4,0,d1],[8,4, (d1 + 1)/2],[8, —4, (d1 + 1)/2]}.
Clearly H(d) = Cy and [8,4, (d1+1)/2] is a generator of H(d). For a prime p,
it is clear that p = 822 4 4ay + %yz if and only if (_?1) = (%) = —1, and
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=

p = 2% + 4d1y? or 42 + d1y? if and only if (771) =1and (&) =0,1. Thus,

if 2 { n, by Lemma 9.5 we have

R([8,4, (d1 + 1)/2],n) = ;(1 _ <—nl>> 5 (—idl)

k|n
If 2||n, by Lemma 9.1 we have R([8,4,(d1 + 1)/2],n) = 0. If 4|n, as
H(d/2?) = H(—4dy) = {[1,0,d1],[2,2,(dy + 1)/2]}, using Lemmas 2.1
and 9.1 we see that

|

RS, 4, (dy +1)/2],m) = (1 — (—1) v rzms B2 "7 § <_idl).

kln/4

If 2 t ordy(n/4) for some prime p with (%dl) = —1, by (2.1) we have
Zk‘nﬂl(%) = 0 and so R([8,4,(dy + 1)/2],n) = 0. Now assume that
2|ord,(n/4) for every prime p with (%dl) = —1. As p = 2?2 + dyy? implies
p=1 (mod 4), and p = 222 + 2xy + %yz implies p = 2 or p = 3 (mod 4),
we see that

()-m(E)" ()™

plno plno

-1 ordp(n/4)
- I () _ I (—1)°rnln/

p
—4d d
plno, (%):0,1 p:2a:2+2xy+1T+1y27é2

di+1 o ordp n
7 Y

= (_1)0< . (_1)Zp:2z2+2zy+

So we always have

a+(no—1)/2 —4d,
R84, 01+ 1)/2m) = (1= (1) 00702 3 (230,
k|n/4
Now putting the above together we deduce the result.

REMARK 9.1. As [8,4,3] = [3,—4,8] = [3,2,7], we have R([8,4,3],n) =
R([3,2,7],n). If 4|n, d; € {5,13} and n/4 = din;1 (d1 { n1), by appealing to
Lemma 9.7 we have

R+ 020 = (1- (3)) 5 (57
T ’ dy k)
kln/4

Using Lemmas 2.1 and 9.1-9.7 one can similarly prove the following
results.

THEOREM 9.10. Let n € N. Then

d(n,—4) if n=3,5,6 (mod 7),
R([5,2,10],n) = ¢ 46(n/49,—4) if49|n,

0 otherwise,
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d(n,—11)
R([3,1,23],n) = { 26(n/25,—11)

0

THEOREM 9.11. Letn € N. Then

d(n,—19)

R([7,1,17),n) = { 25(n/25, —19)

0
o(n,—3)

R([7,1,13],n) = {6(5(n/121, -3)

0
d(n,—3)

R([7,5,19],n) = { 65(n/169, —3)

0

THEOREM 9.12. Letn € N, p € {3,5} and n = p“ng (p{no). Then

d(n, p(p — 16))
R([p+2,2,8],n) = { d(n/4,p(p — 16))

0

THEOREM 9.13. Letn € N. Then
o(n,—4)
26(n/4,—4)
20(n/16,—4)
46(n/64,—4)

R([5,2,13],n) =

0

THEOREM 9.14. Let n € N. Then

if n =42 (mod 5),
if 25|n,

otherwise.

if n=+2 (mod 5),

if 25|n,

otherwise,

if n=2,6,7,8,10 (mod 11),
if 121 |n,

otherwise,

if n=2,5,6,7,8,11 (mod 13),
if 169 |n,

otherwise.

if 2¢n and () = -1,
if 4|n and (5}) = -1,

otherwise.

if n =43 (mod 8),
if n==+12 (mod 32),
if n =16 (mod 32),
if 64|n,

otherwise.

d(n, —4) if n=>5 (mod 6),

20(n/4,—4) if n =8 (mod 12),
R([5,4,8],n) = ¢ 26(n/9,—4) if n=9 (mod 18),

45(n/36,—4) if 36|n,

0 otherwise.

THEOREM 9.15. Letn € N. Then

d(n,=7) if n=>5 (mod 6),

d(n/4,-17) if n=28 (mod 12),
R([8,6,9],n) =< 26(n/9,—7) if n=9 (mod 18),

25(n/36,—7) if 36|n,

0 otherwise.

289
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THEOREM 9.16. Let n € N. Then
d(n,—4) if n =43 (mod 10),
20(n/4,—4) if n =48 (mod 20),
R([8,4,13],n) = { 26(n/25,—4) if n=25 (mod 50),
46(n/100,—4) if 100|n,
0 otherwise.

10. Formulas for t,(1,8), tn(1,63), tn(7,9), tn(1,55), tn(5,11),
t,(1,39) and ,(3,13). For k =1,...,12 let

g [T{0 =g —g®Pm)} = Z¢k ¢"  (lgl <1).
m=1

n [7], for k = 1,2,3,4,6,8,12 we showed that ¢ (n) is a multiplicative func-
tion of n and determined the value of ¢i(n). See [7, Theorems 4.4 and 4.5].

THEOREM 10.1. Suppose n € N. Then
-2
t,(1,8) = Y (k> — ¢s(8n+9).
k|8n+9

Proof. From Theorem 1.1 we know that 4¢,,(1,8) = R([4,4,9],8n+9). As
H(—128) = {[1,0,32],[4,4,9],[3,2,11],[3, —2,11]} = Cy4 and f(—128) = 4,
we have R([1,0,32],8n + 9) + R([4,4, 9] 8n +9) = N(8n +9,—-128) —
2R([3,2,11],8n + 9). On the other hand, by [7, Theorem 2.2] we have
R([1,0,32],8n 4+ 9) — R([4,4,9],8n + 9) = 2¢s(8n 4+ 9). Thus

At,(1,8) = R([4,4,9],8n + 9)
=1N(@Bn+9,-128) — R([3,2,11],8n + 9) — ¢s(8n +9).

By Lemma 2.1 we have N (8n+9,—128) =23 ;.. o(F° 8). By Theorem 9.8
we have R([3,2,11],8n +9) = 0. Thus the result follows.

THEOREM 10.2. Suppose n € N.
(i) If n + 8 = 2%ng with 21 ng, then

Z (5) if 9|n—1,
k|no
1 k .
tn(1,63) = 2% (7> if 3|n and 2],
;(Z <I;> + (_1)(a0+1)/2¢3(n0)> if 6|n and 21t ap,
klno
L0 if 3tnand 9fn—1.
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(ii) If n 42 = 2%ny with 21 ny, then

.
2 <k> if 9|n+2,
7
kln1
1 k ‘
tn(7,9) = 22<7> if 3|n and 2|,
" ’ k|n1
1 k .
2(; <7> + (—1)(a11)/2¢3(n1)> if 6|n and 2{a,
ni
L0 if 31n and 91fn+ 2.

Proof. From Theorem 1.1 we see that

[ R([1,1,16],2n + 16) if 2¢n,
4ta(1,63) _{ R([L,1,16],2n + 16) — R([1,1,16],n/2 +4) if2|n,
B ([774] 2n + 4) if 21 n,

Observe that R([7,7,4],m) = R([4,—7,7],m) = R([4,1,4],m). We then

have

R([4,1,4],2n + 4) if 240,
tn(7,9) = {R([4,1,4],2n+4) — R([4,1,4],n/2+1) if2]|n.

As H(—63) = {[1,1,16],[4,1,4],[2,1,8],[2, —1,8]} = C4, we have
R([1,1,16],m) + R([4,1,4],m) = N(m, —63) — 2R([2,1,8],m).

On the other hand, by [7, Theorem 2.2], R([1,1,16],m) — R([4,1,4],m)
= 2¢3(m). Thus,

R([1,1,16],m) = 1N (m, —63) — R([2,1,8],m) + ¢3(m),
R([4,1,4],m) = LN (m,—63) — R([2,1,8],m) — ¢3(m).

From Lemma 2.1 and (9.1) we see that

25 () 3 4m,

k|m
N(m,—63) = -7 =7\ .
8> <k> :8Z<k> if 9| m,
klm/9 klm

0 otherwise.
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By Theorem 9.7 we have
R([2,1,8],m) = R([2,-3,9],m) = R([9,3,2],m)

Z(;:) if 3|m — 2,

klm
= -7
2> <k> if 9|m,
klm
0 otherwise.

Thus, for m = 2tmg (21 mg) we have

3N (m, —63) — R(2,1,8],m)

Z( ) %:i;( > t+1)Z(l;) 3 m— 1,

klm klmo

23 () - Zz@ ) =200 Y (5) iolm,
klm k|mo =0 k|mo

0 otherwise.

Hence, for o, mg € N with 2 m(y we have

N (2T my, —63) — R([2,1,8],2% 1 my)
— AN (2% mg, —63) + R(]2,1,8],2% 'mg)

(a+2—a)2<§>:22(§> if 32%mo + 1,
) e+ -200 Y (’;) 4y (i) it 9 mo,

0 otherwise.
If 2t n, by [7, Theorem 4.5(i)] we have ¢3(2n + 16) = ¢3(2n +4) = 0.
Hence, applying the above we obtain
4t,(1,63) = R([1,1,16],2n + 16)
= 1N(2n+16,—63) — R([2,1,8],2n + 16)

2 )" (’;) if 3|n,

kln+8

k
4y (7> if 9|n—1
kln+8
0 otherwise



Binary quadratic forms and sums of triangular numbers 293

and
4t,(7,9) = R([4,1,4],2n + 4)
= 1N(2n+4,-63) — R([2,1,8],2n + 4)

2 ) (5) if 3| m,

k|n+2
= k
43 <7> if 9|n+ 2,
k|n+2
0 otherwise.

Now assume 2 |n. Suppose n = 2%ny — 8 = 2%n; — 2 with 2 { ngng.
From the above we deduce
4t,(1,63) = R([1,1,16],2° ng) — R([1,1, 16], 220" 1ng)
= 1N(2*0%!ng, —63) — R([2,1,8],2% T ng) — SN (207 ng, —63)
+ R([2,1,8],2° Ing) + ¢3(2%0 T ng) — ¢3(2%0 Ing)

22 < ) + ¢3(2°% ng) — ¢3(27° " 'ng) if 3|n,
k|no
- 42 < ) + ¢3( 2a0+1n0) ¢3(2a0_1n0) if9|n—1,
klno
$3(220F ng) — $3(2%0 " ng) otherwise

and
4,(7,9) = R([4,1,4],2* " ny) — R([4,1,4],2% ny)
= %N(2a1+1n1, —63) — R([Q’ 1, 8], 2a1+1n1) _ %N(?al_lnl, —63)
+R([2, 1,8] 2a1—1n1) _ ¢3(20¢1+1n1) + ¢3(2a1—1n1)
22( ) $3(2° ) + ¢3(20 7 Iny)  if 3|,

k|n1

R 42() 03(2 1) + 952" Hny) i 9| 42,

klni

[ —¢3(2Tny) + ¢3(2°171ny) otherwise.

As H(—63) = {[1,1,16],[4,1,4],[2,1,8],[2,—1,8]} = C, and ¢3(m) =
$(R([1,1,16],m) — R([4,1,4],m)), using [6, Theorem 7.4(ii)] we see that
¢3(m) is a multiplicative function of m. By [0, Theorem 8.7], for t € N we

have
—1)Y2 if 2]t
2t _ ( )
#a(2) {0 it 21,
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Thus, for : = 0,1,
$3(2%F ;) — ¢3(2% 7 ny) = (¢3(2%7H) — 93(2%7 1)) 3 (ms)
B {2(—1)(ai+1)/2¢3(m) if 21 oy,

From [7, Theorem 4.5(i)] we know that ¢3(n;) = 0 for n;, = 0,2 (mod 3).
As n =1 (mod 3) implies 3 |n; and so ¢3(n;) =0, and n = 2 (mod 3) and
2t o; implies n; = 2 (mod 3) and so ¢3(n;) = 0, we see that ¢3(2%1n;) —
$3(2%71n;) = 0 for n # 0 (mod 3). Now putting all the above together we
deduce the result.

THEOREM 10.3. Suppose n € N. Then ¢3(n) = ton—2(7,9) — ton—g(1,63)
and $o0 tan—2(7,9) — tan—s(1,63) is a multiplicative function of n.

Proof. Suppose 2n = 2%ny with 2 { ng. According to the proof of Theo-
rem 10.2, ¢3(n) is a multiplicative function of n and
(=)@ 2p3(ng) if 21 a,
0 if 2] a.
As ¢3(1) = 1, ¢3(2) = ¢3(3) = 0 and ¢3(4) = —1, we see that ¢3(n) =
ton—2(7,9) — ton—s(1,63) for n = 1,2,3,4. Now suppose n > 4. From the
above and Theorem 10.2 we deduce

ton—2(7,9) — tan—g(1,63)
_ { (=1)(@=D2¢3(ng) = ¢p3(n) if 3|n—1and 21,
0 otherwise.

If 3|n—1 and 2|, then o > 2 and so ¢3(n) = 0 by the above. From [7]
Theorem 4.5(i)] we also have ¢3(n) = 0 for n = 0,2 (mod 3). Thus we always
have ¢3(n) = to,—2(7,9) — ton—g(1,63). So the theorem is proved.

¢3(n) = ¢3(2° " 'ng) = $3(2° )3 (o) = {

THEOREM 10.4. Suppose n € N, m € {3,565} and n+m +2 = 4"m°A
with (A,2m) = 1. Then

- A —m —m
b (1 (16 — 1)) =t e (1,16 — 1) = 4(7")2< (16 )>.

k
k| A

Proof. From Theorem 1.1 we see that
4t,(1,8m + 15)
= R([1,1,2m +4],2n + 2m + 4) — R([1,0,8m + 15],2n + 2m + 4)
and

4t,(m,16 —m) = R([m, m,4],2n +4) — R([m,0,16 — m|,2n + 4).
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As [1,0,8m + 15] = [1,2,4(2m + 4)], [m,0,16 — m] = [m,2m,16] and
f(—=4(8m + 15)) = 2, by [6, Theorem 3.2] we have

0 if 2|n,
R([1,0,8m+15), 2n+2m+4) = ,
(1,0, 8m+15], 2n+2m+4) {R([1,1,2m+4],(n+m—|—2)/2) it24n

and
R Y ’47 2 2 f2 R
R([m.0.16 — m], 2n + 4) = § Blmymo 4l (n+2)/2) il 2|n
0 if 21 n.
Hence
(10.1)  4t,(1,8m +15)
R([1,1,2m + 4],2n + 2m + 4) if 2|n,

=< R([1,1,2m +4],2n + 2m + 4)
—R([1,1,2m +4],(n+m +2)/2) if 2tn

and
(10.2)  4tpim(m,16 —m)

_{R([m,m,4],2n—|—2m+4) if 2|n,
L R(jm,m,4],2n + 2m + 4) — R([m,m,4], (n +m +2)/2) if 2{n.

It is easily seen that
H(_Sm - 15) = {[1’ 1’2m + 4]5 [m7m74]7 [25 17m + 2]5 [27 _1am + 2]} = C’4‘

Thus applying [6, Theorem 7.4(ii)] we see that F'(n) = 1(R([1, 1,2m~+4],n)—
R([m,m,4],n)) is multiplicative. Hence

F(2n+2m +4) = F(2*1ng) = F(22" ™) F(no)
and
F((n+m+2)/2) = F(2*Ing) = F(2* ") F(no) for r>1.

Since f(—8m — 15) = 1 and 2 is represented by [2,1,m + 2|, using [0,
Theorem 8.7] we see that F(2!) = 0 for 2 { t. Thus F((n +m + 2)/2) =0
for r > 1 and F(2n 4 2m + 4) = 0. Hence R([1,1,2m +4],(n + m + 2)/2)
= R([m,m,4],(n+m +2)/2) for r > 1 and R([1,1,2m + 4],2n + 2m + 4)
= R([m,m,4],2n + 2m + 4). This together with (10.1) and (10.2) yields
tn(1,8m~+15) = tpm(m, 16—m). From the above, Lemma 2.1 and Theorem
9.1 we deduce
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9R([1,1,2m + 4], 2n + 2m + 4)
= R([1,1,2m +4],2n + 2m + 4) + R([m, m, 4], 2n + 2m + 4)
=N(2n+2m+4,—-8m — 15) — 2R([2,1,m + 2],2n + 2m + 4)

- 2k|2n§m+4 <_8mk_15> N <1 B <22r;1A>> 5 <_8mk_15>

:(1@)) > <_8mk_15) onom

k|2n+2m+4

Similarly, for odd n we have

2R<[1,1,2m+4],n+7;+2> = <1— (i)) >

<—8m — 15)
k|(n+m+2)/2

If 2|n, from the above, (10.1) and the fact that 8m + 15 = m(16 — m)
we obtain

ta(l, m(16 m)) tn(1,8m + 15)
([1 1,2m +4],2n + 2m + 4)

@y (—m(lz—m)

E|2n+2m+4

T (. (o
_ 14(3» 3 <_m<12_m>) _ 14(2) 3 (—m(lz—m)

klmsA k|A

3\3>

If 2t n, by (10.1) and the above we have
tn(1,m(16 —m)) = t,(1,8m + 15)
= H(R([1,1,2m +4],2n+ 2m +4) — R([1,1,2m + 4], (n + m + 2)/2))

- 1_8(?1)( 2 <_m(12_m)> _k\ n+m+2)/2< e >>

k|2n+2m+4
52 () Q;il,ﬁ))

This completes the proof.
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THEOREM 10.5. Let n € N, m € {3,5} and f(n) = tan—2(m,16 —m) —
ton—2-m(1,m(16 —m)). Then f(n) is a multiplicative function of n.

Proof. Define F(n) = 3(R([1,1,2m + 4],n) — R([m,m,4],n)). Since
H(—8m —15) = {[1,1,2m + 4], m,m, 4], [2,1,m + 2], [2, —1,m + 2|} = Cu,
from [0, Theorem 7.4(ii)] we know that F'(n) is multiplicative. It is easily
seen that F'(1) =1, F(2) = F(3) = 0 and so f(n) = F(n) for n = 1,2, 3.
From [6, Theorem 8.7] we see that F(2!) = (—1)%/2 or 0 according as 2|t or
2t t. Suppose n = 2%ng with 2 { ng. We then have F(2°+2) = —F(2%). For
n > 3, from (10.1), (10.2) and the above we derive

Aton—o-m(1,m(16 —m)) — 4ta,—2(m, 16 —m) = 2F(4n) — 2F (n)
= 2(F(2°72) — F(2%))F(ng) = —4F(2%)F(ng) = —4F(n).
Thus, f(n) = F(n). This proves the theorem.
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