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Abstract

In the paper we present some new inversion formulas and two new formulas for Stirling
numbers.
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1. Introduction

Let N be the set of positive integers. Let a(z) = z + agz? + azz® + --- and a(rfl—),m =

o a(n,m)E; for m € N. In Section 2 we show that for any k,n € N,

k
k— k
a(n+kn) =) <kZ> (ki?)a(kw’r)'

r=1

Let f(z) = co+c12 +cax® + -+ with ¢g # 0. In Section 3 we establish the following general
inversion formula:

an=n Y [ (@) by (n=1,2,3,...)
m=1

n

1 _ _
= ba=— S T (@) T am (n=1,2,3,...),
m=1
where [2¥]g(x) is the coefficient of 2 in the power series expansion of g(z). As a consequence,

for a given complex number ¢ we have the following inversion formula:

- mt 1 & —nt
a":nz<n—m>bm (n>1){:>bn:n2(n_m)am (n>1).
m=1

m=1

Let a~!(z) be the inverse function of a(z). In Section 4 we derive a general formula for
[z +"]a(x)™ by using the power series expansion of a~!(x). As a consequence, we deduce a
symmetric inversion formula, see Theorem 4.3.
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Suppose n € Nand k € {0,1,...,n}. Let s(n, k) be the unsigned Stirling number of the first
kind and S(n, k) be the Stirling number of the second kind defined by

n

w@—1)-(w—n+1) =Y (=1)" Fs(n, k)z*

k=0

and
n

" = S(n,k)x(x—1)---(x —k+1).
k=0

In the paper we obtain new formulas for Stirling numbers, see Theorems 2.3 and 4.2.

2. The formula for [z™]f(x)

Lemma 2.1. Let t be a variable and m € N. Then

[ﬁm](1+a1$+a2$2+---—|—amgjm+...)t
— t(t_l)(t_(k1++km)+]—)aklakm

- Tl o] Lot
ke1+2ka+ -t mk, =m ! m

Proof. Using the binomial theorem and the multinomial theorem we see that

[2™](1 4+ a12 + agz® + -+ + apz™ + - )

= [xmKl +a1x + a2x2 + 4 amxm)t

m - t 2 my\n
=[z ];(n>(a1x+a2x +- 4 ape™)
S 3 m 2 m\n
:Z " [ (a12 + azz® + -+ + ama™)
n=0
(e X M (@2) - (e
= T ———(a12)™ - (@)
n kil k!
n=0 ki +ha+tkm=n
"t !
() T et
n=0 n ki+4-+kn=n L me
k1 42ka+-Amhkm=m
tt—1)---(t—(kr+-+kn)+1) 4 k
- bl
kil k!

k1+2ko+---+mk,,=m

Theorem 2.1. Let t be a variable, m € N and f(x) =1+ a1x + agz® +---. Then

sy =30 (720 (O s

r=1

Proof. From Lemma 2.1 we see that [2™]f(z)? is a polynomial of ¢ with degree < m. Hence

Pt =) =3 (1 1) (D) st

r=1

is also a polynomial of ¢ with degree <m. If r € {1,2,...,m} and t € {0,1,...,m} with ¢ # r,
then t < r or m —t < m — r and hence (:Z:i)(f,) = 0. Thus P,(t) =0 for t = 0,1,...,m.

Therefore P,,(t) = 0 for all ¢. This yields the result.



Corollary 2.1. Let m € N and let a be a complex number. Then
o -1
S () e (T e
—\m-—r r
Proof. Clearly [z™](e”) = L. Thus, by Theorem 2.1 we have
" s (m—t\ [\
m! _; (m—r) (T)m'

Now taking ¢ = —a and noting that (7%) = (—1)”(‘1”_71) we deduce the result.

Theorem 2.2. Let a(z) = z+ asx® +azx3+---. Form € N let a(w) =Y o a(n,m)E.
Then for any k,n € N we have

a(n+ k,n) = zk: (Z::) (Zi?;)a(k—kr,r).

r=1

Proof. Set «(z) = a(z)/x. Then for m € N we have

m o0 m)
alx)™ :z;)am—i—k;m ( +k) z*.
Thus, | |
[2Ma(z)" = a(n + k, n)m and [2*]a(z)" = a(k +r, r)m.

Since a(0) = 1, by Theorem 2.1 we have

ot =3 (327 (1) et

r=1

Hence

a(nJrk,n)(n:L_!k)! ,k <]’z::) (”)(ki' gk )

and so

E—n n+k)!
a(n—i—k,n):Z( )Wa(k—&-r,r).

This is the result.
Theorem 2.3. Let k,n € N. Then

S(n+ k,n) :i (’Z‘Z) (Zigsww,?«)
and
s(n + k, n) zzk: (i:ﬁ) (Zi?)s(k—&-r,r).

Proof. It is well known that ([5])

(ew ;L'l)m _ Z S(n,m)% and (10g(1+33))m _ Z(_l)n—ms(n7m)%.

n=m ’ n=m

Thus the result follows from Theorem 2.2.



3. A general inversion formula involving [2*]f(z)!

Lemma 3.1. Let a~1(x) be the inverse function of a(z). Then for any two sequences {an}°
and {b, }22, we have:

oo

ap, = Z [z"]a(x)" by (n=0,1,2,...)
m=0
= b, = Z "o (2) "ty (n=0,1,2,...).
m=0

Proof. Let a(z) =7 jana™ and b(z) = >~ bya™. Then clearly

apn, = Z [z"]a(x)"by (n=0,1,2,...)
m=0
— a(x) = Z b, Z[az”]a(m)mx” = Z ba(x)™
m=0 n=0 m=0

So the lemma is proved.

Theorem 3.1. Let k € N. For nonnegative integers m and n let

0F(L) irkin
ag(n,m) = =
0 if k1n.

Then we have the following inversion formula:

o0

an = Z ag(n,m)b, (n=0,1,2,...)

m=0

= b, = Z ag(n,m)a, (n=0,1,2,...).
m=0

Proof. Let a(z) = (1 — %)% (0 < 2 < 1). Then clearly a1(z) = a(z) and a(z)™ =
(1—a®)® =300 (5)(=1)ak = 3°2° ) ax(n,m)z™. Thus applying Lemma 3.1 we deduce the
theorem.

Lemma 3.2 (Lagrange inversion formula ([5, p.148], [12, pp.36-44])).

Let a(z) = aqz + agz? + -+ with ay # 0, and let k,n € N with k <n. Then

w0 @) = Lo ()™

n x

Theorem 3.2. Let f(x) = co + c17 + cax® + -+ with ¢ # 0. Then for any two sequences
{an} and {b,} we have the following inversion formula:

ap =n zn:[x"_m]f(x)m by (n=1,2,3,...)
m=1

S|

<~ b, =

Z """ f(@)™ am (n=1,2,3,...).



Proof. Set a(z) = xf(z). Then clearly [z"]a(z)™ = 0 for m > n. As a~!(zf(x)) =
a Y a(z)) = x we see that a=1(0) = 0 and so a~!(z) = dyx + daz? + - -+ for some dy,ds, . ...
Thus [z"]a~!(z)™ = 0 for m > n. Set ag = by = 0. From Lemma 3.1 we see that

an = Z [2"]e(x)™ - by = Z ["]a(z)™ by (n>1)
m=0 —

m=1
— bn = Z [zn}ail(l‘)m cOm = Z [xn]afl(x)m cam (n > 1)
m=0 m=1

For m < n we see that [z"]a(z)™ = [2™]a™ f(z)™ = [z"~™]f(z)™ and [z"]a~ ! (z)™ = Z[z""™]f(z)™"
by Lemma 3.2. Thus

n

an =Y [z (@) b (n21) = b= %[w”‘m]f@)‘" “am (n>1).

m=1 m=1
Now substituting a,, by a,/n we obtain the result.

k
Ase® =37 %, we see that

[mn—m](eac>m _ m"" and [xn—m](ew)—n _ (_n)n—m

(n—m)! (n—m)!"

Thus, putting f(z) = e® in Theorem 3.2 we have the following inversion formula:

n—m 1 n

an:nime n>1) < bnnz((nn_)nm;am (n>1).

Substituting a,, by a,/(n —1)!, and b,, by b, /n! we obtain

o= 3 (MY w21 = 0= 3 (7 e 2

m=1 m=1

This is a known result. See [11, p.96].
As (L4 2) =372 (9)a* (|| < 1), we see that for 1 < m < n,

"] (1 4+ 7)™ = (n“_“m) and  [z")(1 4+ )" = (n__"fn).

Now putting f(z) = (1 + )" in Theorem 3.2 and applying the above we deduce the following
result.

Theorem 3.3. Let t be a complex number. For any two sequences {a,} and {b,} we have
the following inversion formula:

- mi 1 & —nt
an:nz<n_m>bm (n>1){:>bn:nz<n_m>am (n>1).
m=1 m=1

Theorem 3.4. Let f(x) = co + c1@ + cox® + -+ with cg # 0. For k,n € N with k < n we
have

> %[f"ﬂf(x)m @) T = 3 mlam R ()R T f ()T =0,

m=k m=k

Proof. For m € N let b,, = = 3" [x™*] f(x)~™ - y*. Applying Theorem 3.2 we see that

Sl )™ b = L



On the other hand,

n

m=1 m=1 1
=50 (" e ) )
k=1 m=k
Thus,
3 (X Sl ey = L
k=1 m=k
and hence

> %[zn*m] f@)™ [ F)f(x) ™™ =0 for k<n.

m=k
For m € N let a,, = m Y -, [z™ *]f()* - y*. Applying Theorem 3.2 we have

n

Z [ f(2)™" - am = ny™.

On the other hand,
Sl @) = S @) m S () -y
m=1 m=1 k=1
=3 (@) mla @) )y
k=1 m=k
Thus,
S (S0 @) @) ) =
k=1 m=k
and hence

n

Z mlz™ K f(z)* - [z f(x)™" =0 for k< n.

m=k
This completes the proof.
Corollary 3.1. For k,n € N with k < n we have

S S ) () o

Proof. Since (1+z)" =32 (")a*, taking f(z) = (1+ )" in Theorem 3.4 we deduce the
result.

For the development of combinatorial inversion formulas, see [1-13].

4. A formula for [z™"|a(z)™

Theorem 4.1. Let 3(z) =z Y .~ Box™ with By # 0. Let a(x) be the inverse function of B(x).
For m,n € N we have

mtn m_ M (m+n—1+k +-+kp)!
2" al@)™ = > Tl ko]
k14+2ko+---+nk,=n
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% (_1)k1+k2+~'+knﬁan*m*k1*“'*knﬁflﬁéw . ﬂ"];n

Proof. By the multinomial theorem we have

(X% = ¥ armllGe)"

kit tkn=s
Thus
SR S S el )
k1+2k2+ Frkn=n
As

—n—m

m*”(ﬂwZﬂkx) o —1—(1+Zﬂ’“ ’“) 1
:i —n —m) fnfmfi!) (—n—m—s+1) (Zﬁk k)

s=1

from the above we see that

e (5 )"

Bx)
= (=n-m)(—n—-m—1)---(—n—m —s+1)
_; s!
8! n ﬁi ki
. m.;kn:s kll--~kn!g(@))

k1+2ko+-+nkn=n
(m+n)(m+n+1)---(m+n+k+---+k,—1)

... |
ki42ko+--+nk,=n kll. kn
1\ Fktothn i
X(—*) ﬁl...ﬁnn.
Bo !
Thus applying Lemma 3.2 we have
m+n mo_ m n ( z >m+n
2"+ a(z) win (50
—n (ki+-+kp+m+n—1)
- Bo Z Ik —1
m+n kil kpl(m 4+ n—1)!

k14+2ko+--+nkp=n
k1t-thn g— (b1t +kn) gk Fom
X(fl) 1+ 50(1 n)ﬂll"'ﬂn'

This yields the result.

Corollary 4.1. For m,n € N we have

(kl + .. +kn +m+n— 1)!<_1)]€1+...+kn _ (_l)n m-+n
(m+n— Dkl k! B m )

k14+2ko+---+nkp=n

Proof. Let f(z) = x) o z" = 2. Then the inverse function of f(z) is given by

11—z

. Using the binomial theorem we see that [z "]a(z)™ = [2"](1 +z)™™ = (") =

O((ﬂ?) = 1+ n

(=)™ (m+: 1). Now applying Theorem 4.1 we deduce the result.



Corollary 4.2. For n € N we have

k1++kn+n)' 1+ 19k2 X
2 ( Tyl k! (=1)katFhagkighs (4 1)kn

ki+2kz 4 +nkn=n

1) () 1 (2n+2).

n+2\n+1
Proof. Let

1—-+v1-4 1
% and a(z)zix—l 0<z<—).
1+ )2 2

Bla) = 3

It is easily seen that a(x) = 371(x). From [5, p.53] and the binomial theorem we know that

alz) = x% - —11- 5 <2:_:r12) 2" and f[(z) = x%(—l)”(n + 1)a".

Now applying Theorem 4.1 (with m = 1) we deduce the result.
Corollary 4.3. For n € N we have

(ki + -+ ky +2n) (=1)kathetthatn
kil k! 3tk15lka oo (20 4 1)hn

= (2n — N2
ki4+2ko+---+nkp=n

Proof. It is well known that

— (2n+1)!

and - (2n>
arcsinx = 7;0 Wn-’—l)

Set B(z) =sinz =z oo, Bpx". Then f~!(x) = arcsinz and

22+ (|2 < 1).

0 if 214,
Bi=1< (=172 .
m if 2 | 1.

Thus, taking m = 1 and «(x) = arcsinz in Theorem 4.1 and substituting n by 2n we obtain

(2n+1)! - [2*" ] arcsinz
_ (2n + kl + kQ + -+ an)' ki4ko+-+kan gk1 gko k2n
_ Z S (—1) By B2

ki142ko+---+2nkap=2n

oo ko) i —1)F N k2
_ 3 (2n + kg + kg + - - - + ko) (1)t +k2nH( (-1) )!) _

Vgl - ! 2i+1
koo +2kadt+nkan=n kolkal - K i=1 (20 +

Replacing ky; with k; in the above formula and observing that

(%)

(2n+1)!- [a:Q"H] arcsinz = (2n 4+ 1)! - m

= (2n — 1)1

we deduce the result.



Theorem 4.2. For m,n € N we have

1 (k14 +kp+m+n—1)!
S - _1\kittkatn n
e mm) (m— 1! k1+2k2;+nk =n< : 261k - B2kl (n 4 1)Rn k!
and
_ 1 kv totbgn (B Ek,+m+n—1)

" k1+2ko+-+nk,=n

Proof. Clearly e* — 1 and log(1 + x) are a pair of inverse functions. As

(e —1)™ >° xmtn B — (—1)° i+1

putting a(z) =e* — 1, 8(z) =log(l + z) and f; = (;_12 in Theorem 4.1 we see that

m'S(m+n’m) _ [m+n]( T m
W—[ﬂf (e 1)
m (k14 +kn+m+n-—1)!

I Tl ol
(Mt o e nbmn ! n

% (71)k1+k2+-~~+kn . (71)k1+2k2+~-+nkn

2k1.3k2...(n+1)kn'

Since

o )" & xmtn -
w — go(fl)"s(m + n,m)m and e —1= Z

putting a(z) =log(l + z), f(z) =e* — 1 and f; = ﬁ in Theorem 4.1 we see that

Lmls(m+n,m)

(=1) (m +n)!
— ") log(1 + 2))™
m (ky+ -+ kn+m+n— 1) (—1)ka+ethn
" (m+n) Torl - - oy "otk 3R (ot 1)l

k142ko+---+nky,=n

By the above, the theorem is proved.

We remark that Theorem 4.2 provides a straightforward method to calculate s(m + n,m)
and S(m + n,m) for small n. For example, we have

(4.1) S(m+3,m)=<m;1><m23> and s(m+3,m)=<m;—3><m23>.

Corollary 4.4. For m,n € N we have

i (7:> (_1ym-rpmn

r=0

i+ 4Ky +m4n— 1)
_ _1)ktetkatn (k1 n .
m > (=1) 2k 32kl (4 1)kn k!

k1+2ke+--+nkn=n



Proof. Tt is well known that ([5, p.204])

i (m> (=)™ = mlS(m 4 n,m).

r
r=0

Combining this with Theorem 4.2 we obtain the result.

Let a(r) = —z+ o122 + apa® + - -+ and B(x) = —z + B122 + S22 + - -+ be a pair of inverse
functions. Taking m = 1 in Theorem 4.1 we deduce:

Theorem 4.3. We have the following inversion formula:

(=t e e )L SR
B P > Kyl k! A
k1+2ko+---+nk,=n
_(=1)ntt (k14 +kn+n) K

k14+2ko+---+nk,=n

Definition 4.1. If a(z) = a~!(z), we say that a(x) is a self-inverse function.
For example, az) = 222 ((r? + ¢2)(r? + st) # 0) and a(z) = (1 — 2%)% are self-inverse
functions.

Theorem 4.4. Let a(r) = —z+ayz?+agz3+- - be a self-inverse function. Then ag,auy, . . .
depend only on aq,as, . ... Moreover, for n € N,
(k14 + ko1 +n)! 4 o
Z kl...kn ! art -yl
(42) ki+2ko+--+(n—1)kn_1=n r nel

0 if 24n,
{—2-(71—1—1)!04” if 2| n.

Proof. By Theorem 4.3 we have

o U atotbuen) e
n= | Lok, ! "
(n+1)! k1 +2ka+-+nkn=n Fal-e bt
_pynt (k1 +- -+ kp1+n)! g Fn1 n+1
- S Z e ajt -+ (D) .

k1+2ke+-+(n—1)kp_1=n

Thus (4.2) is true. Using (4.2) and induction we deduce that asg,ay,... depend only on
i, s, . ... This completes the proof.

If a(z) = -2 + a1z + asz® + - -+ is a self-inverse function, from (4.2) we deduce
g = —ocf, oy = 20/1l — 3aya3,
(4.3) ag = —13a8 — dajas — 203 + 18adas,

ag = 14504&1g — 2210/?043 + 5004%a§ + 350&’0[5 — dazas — daQy.
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